
A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK
FOR XQUERIES OVER DYNAMIC DISTRIBUTED CONTENT

AND ITS APPLICATION FOR SCALABLE SERVICE DISCOVERY

DISSERTATION

DIPL. ING. WOLFGANG HOSCHEK

AUSGEFÜHRT ZUM ZWECKE DER ERLANGUNG DES
AKADEMISCHEN GRADES EINES

DOKTORS DER TECHNISCHEN WISSENSCHAFTEN

EINGEREICHT AN DER TECHNISCHEN UNIVERSITÄT WIEN
FAKULTÄT FÜR TECHNISCHE NATURWISSENSCHAFTEN UND

INFORMATIK

UNTER DER ANLEITUNG VON
O.UNIV.-PROF. DIPL.-ING. MAG. DR. GERTI KAPPEL

AO.UNIV.-PROF. DR. ERICH SCHIKUTA
CERN BETREUER: DR. BERND PANZER-STEINDEL

GENF, IM MÄRZ 2002

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 4
1.3 Contribution and Organization of this Thesis 7
1.4 Terminology . 13

2 Service Discovery Processing Steps 15
2.1 Introduction . 15
2.2 Description . 16
2.3 Presentation . 18
2.4 Publication . 19
2.5 Soft State Publication . 21
2.6 Request . 22
2.7 Discovery . 23
2.8 Brokering . 23
2.9 Execution . 24
2.10 Control . 25
2.11 Summary . 27

3 A Data Model and Query Language for Discovery 29
3.1 Introduction . 29
3.2 Database and Query Model . 30
3.3 Generic and Dynamic Data Model . 32
3.4 Query Examples and Types . 34
3.5 XQuery Language . 37
3.6 Related Work . 44
3.7 Summary . 46

4 A Database for Discovery of Distributed Content 49
4.1 Introduction . 49
4.2 Content Link and Content Provider . 51
4.3 Publication . 53
4.4 Query . 56
4.5 Caching . 57

i

ii CONTENTS

4.6 Soft State . 59
4.7 Flexible Freshness . 61
4.8 Throttling . 62
4.9 Related Work . 63
4.10 Summary . 68

5 The Web Service Discovery Architecture 69
5.1 Introduction . 69
5.2 Interfaces . 70
5.3 Network Protocol Bindings . 74
5.4 Services . 75
5.5 Properties . 75
5.6 Comparison with Open Grid Services Architecture 78
5.7 Summary . 81

6 A Unified Peer-to-Peer Database Framework 85
6.1 Introduction . 86
6.2 Agent P2P Model and Servent P2P Model . 89
6.3 Loop Detection . 90
6.4 Routed vs. Direct Response, Metadata Responses 91
6.5 Query Processing . 96
6.6 Pipelining . 101
6.7 Static Loop Timeout and Dynamic Abort Timeout 102
6.8 Query Scope . 106
6.9 Containers for Centralized Virtual Node Hosting 110
6.10 Query Processing with Virtual Nodes . 112
6.11 Related Work . 115
6.12 Summary . 119

7 A Unified Peer-to-Peer Database Protocol 125
7.1 Introduction . 125
7.2 Originator and Node . 126
7.3 High-Level Messaging Model . 127
7.4 Concrete Messages . 131
7.5 Communication Model and Network Protocol 134
7.6 Node State Table . 138
7.7 Related Work . 139
7.8 Summary . 141

8 Conclusion 145
8.1 Summary . 145
8.2 Directions for Future Research . 148

9 Acknowledgements 151

Abstract

In a large distributed system spanning administrative domains such as a Grid, it is desirable
to maintain and query dynamic and timely information about active participants such as
services, resources and user communities. The web services vision promises that programs
are made more flexible and powerful by querying Internet databases (registries) at runtime
in order to discover information and network attached third-party building blocks. Services
can advertise themselves and related metadata via such databases, enabling the assembly
of distributed higher-level components. In support of this vision, this thesis shows how to
support expressive general-purpose queries over a view that integrates autonomous dynamic
database nodes from a wide range of distributed system topologies.

We motivate and justify the assertion that realistic ubiquitous service and resource dis-
covery requires a rich general-purpose query language such as XQuery or SQL. Next, we
introduce the Web Service Discovery Architecture (WSDA), which subsumes an array of dis-
parate concepts, interfaces and protocols under a single semi-transparent umbrella. WSDA
specifies a small set of orthogonal multi-purpose communication primitives (building blocks)
for discovery. These primitives cover service identification, service description retrieval, data
publication as well as minimal and powerful query support. The individual primitives can be
combined and plugged together by specific clients and services to yield a wide range of be-
haviors and emerging synergies. Based on WSDA, we introduce the hyper registry, which is a
centralized database node for discovery of dynamic distributed content, supporting XQueries
over a tuple set from an XML data model. We address the problem of maintaining dynamic
and timely information populated from a large variety of unreliable, frequently changing,
autonomous and heterogeneous remote data sources.

However, in a large cross-organizational system, the set of information tuples is partitioned
over many such distributed nodes, for reasons including autonomy, scalability, availability,
performance and security. This suggests the use of Peer-to-Peer (P2P) query technology.
Consequently, we take the first steps towards unifying the fields of database management
systems and P2P computing. As a result, we propose the WSDA based Unified Peer-to-Peer
Database Framework (UPDF) and its associated Peer Database Protocol (PDP), which are
unified in the sense that they allow to express specific applications for a wide range of data
types (typed or untyped XML, any MIME type), node topologies (e.g. ring, tree, graph),
query languages (e.g. XQuery, SQL), query response modes (e.g. Routed, Direct and Referral
Response), neighbor selection policies, pipelining, timeout and other scope characteristics.

The uniformity and wide applicability of our approach is distinguished from related work,
which (1) addresses some but not all problems, and (2) does not propose a unified framework.

iii

iv CONTENTS

Zusammenfassung

In einem mehrere Organisationen überspannenden, großen verteilten System, wie z.B. einem
Grid, ist es wünschenswert dynamische und zeitsensitive Information über Netzwerkdienste,
Ressourcen und Benutzer zu verwalten und abzufragen. Das Konzept der Webdienste ver-
spricht flexible Programme die zur Laufzeit Internet Datenbanken (Registries) benutzen um
Informationen und Netzwerkdienste von Drittanbietern zu finden. Dienste können sich und
verwandte Metadaten durch derartige Datenbanken anbieten und so das Zusammenfügen von
höheren verteilten Komponenten ermöglichen. Diese Dissertation unterstützt diese Vision
indem sie zeigt, wie ausdrucksstarke Mehrzweckabfragen ueber eine Sicht formuliert werden
können, die autonome dynamische Datenbankknoten von beliebigen Topologien integriert.

Wir motivieren und rechtfertigen die Behauptung, daß das Finden von Ressourcen und Di-
ensten eine reiche Mehrzweckabfragesprache wie z.B. XQuery oder SQL verlangt. Wir führen
die sogenannte Web Service Discovery Architecture (WSDA) ein, die disparate Konzepte,
Schnittstellen und Netzwerkprotokolle unter einem quasi-transparenten Dach zusammen-
faßt. WSDA spezifiziert eine kleine Menge von orthogonalen Mehrzweckfunktionen (Bau-
steinen) zum Finden von Diensten. Diese decken die Bereiche der Dienstidentifizierung,
Dienstbeschreibung, Datenpublikation sowie minimale und mächtige Abfrageunterstützung
ab. Clients und Server können diese Funktionen so kombinieren daß dabei eine breite Palette
von Verhalten und Synergien ensteht. Basierend auf WSDA führen wir eine zentrale Daten-
bank für das Finden von dynamischen verteilten Daten ein, die Hyper Registry. Diese un-
terstützt XQueries über dynamische, zeitsensitive Daten, die von unzuverlässigen, sich häufig
ändernden, autonomen und heterogenen Datenquellen stammen.

In einem mehrere Organisationen überspannenden, großen verteilten System jedoch sind
die Datentupel über viele Knoten verteilt, z.B. aus Gründen der Autonomie, Skalierbarkeit,
Verfügbarkeit, Effizienz und Sicherheit. Daher empfiehlt sich die Benützung von Peer-to-Peer
(P2P) Abfragetechnologie. So unternehmen wir die ersten Schritte zur Vereinheitlichung von
Datenbank Management Systemen und P2P Computing. Auf WSDA basierend schlagen wir
das Unified Peer-to-Peer Database Framework (UPDF) und korrespondierende Peer Database
Protocol (PDP) vor. Beide sind vereinheitlicht in dem Sinn daß innerhalb ihreres Rah-
mens spezifische Applikationen für eine Vielfalt von Datentypen, Knotentopologien, Abfrage-
sprachen, Antwort-Modi, und verschiedene Formen der Nachbarschaftsauswahl, des Pipelin-
ing, und von Timeouts formuliert werden können.

Die Einheitlichkeit, breite Einsatzfähigkeit und Wiederverwendbarkeit unseres Ansatzes
unterscheidet sich von verwandten Arbeiten die (1) einzelne aber nicht alle Probleme behan-
deln, und (2) keinen einheitlichen Rahmen einführen.

v

vi CONTENTS

Chapter 1

Introduction

1.1 Motivation

This thesis tackles the problems of information, resource and service discovery arising in
large distributed Internet systems spanning multiple administrative domains. We show how
to support expressive general-purpose queries over a view that integrates autonomous dy-
namic database nodes from a wide range of distributed system topologies. The work was
carried out in the context of the European DataGrid project (EDG) [1, 2, 3] at CERN, the
European Organization for Nuclear Research, and supported by the Austrian Ministerium
für Wissenschaft, Bildung und Kultur.

The international High Energy Physics (HEP) research community is facing a substantial
challenge in joining a massive set of loosely coupled people and resources from multiple
distributed organizations. Although this is the driving use case of the EDG project, this
thesis distills and generalizes the essential properties of the discovery problem and then
develops generic solutions that apply to a wide range of large distributed Internet systems.
However, before we do so, it is helpful to introduce as an example the scenario of a HEP
DataGrid Collaboration.

The HEP community comprises thousands of researchers globally spread over hundreds
of laboratories and university departments. These include CERN (International); Stanford,
Berkeley, Caltech, Fermilab (USA); INFN (Italy); RAL (UK); IN2P3 (France), and more
organizations from some 80 countries such as Austria, Brazil, China, Germany, Greece, India,
Japan, Pakistan, Mexico, Portugal, Russia, Spain, Turkey, etc. What is unique is that these
dispersed researchers jointly undertake so-called physics experiments, which are mammoth
projects with a lifetime of years or sometimes decades. These experiments help to study the
fundamental forces of nature, such as the origin of gravitation.

To conduct an experiment, machines called particle accelerators and detectors are con-
structed. An accelerator typically consists of a several kilometer-long circular underground
vacuum tube surrounded by super-conducting magnets. Subatomic particles such as protons
and electrons are generated, focused into beams and injected into the accelerator. Typically,
two slightly offset beams concurrently travel the tube in opposite directions. Large oscillat-
ing magnets pull and push the particles, accelerating them to near light speed. The circling
beams are steered into a particle detector where they are made to collide head on, causing
the quantum mechanical equivalent of a car crash where opposite highway lanes are directed
into each other (Figure 1.1). For a brief moment in time, very high energies are concentrated

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Particle Detector (top left), Accelerator (top right) and Collision (bottom).

in a small space, forming the conditions under which strange things happen, including cas-
cading creation and decay of particles and their byproducts, and the birth of exotic particles
believed to have existed only shortly after the Big Bang, the creation of the universe. In
effect, detectors are the equivalent of cameras positioned to the left and right of the highway,
collecting incomplete car crash evidence from which, with good detective work and a bit of
luck, one can infer just what has happened. Data acquisition systems record the traces of
collision events and transform them into digital data. The collision data continually arrives at
rates around 100 - 1000 MB/sec. It is streamed via networks into a computer center nearby,
where it is pre-filtered in real-time in so-called event filter farms, which are large dedicated
computer clusters with high bandwidth low latency interconnects. The pre-filtered data is
then stored in robotic tape libraries and disk arrays for later analysis.

Physics data analysis is a complex, tedious and slow iterative process, carried out in
several stages, during each of which Gigabytes, Terabytes and soon Petabytes of data are
filtered, transformed and distilled. Analysis continues until, eventually, and with luck, a plot
visualizes a bizarre and currently unexplainable physics phenomenon, based on which a Nobel

1.1. MOTIVATION 3

Figure 1.2: CERN’s Users in the World.

Prize may or may not be granted some 20 years later.
A massive set of computing resources is necessary for CERN’s next generation Large

Hadron Collider (LHC) project, including thousands of network services, tens of thousands
of CPUs, WAN Gigabit networking as well as Petabytes of disk and tape storage [4]. The
cost of the infrastructure necessary to support HEP experiments and their data analysis is
beyond the financial capabilities of individual universities and even states. Hence, in the past,
resources have been concentrated at a handful of laboratories, primarily in Switzerland, USA,
Japan and Germany. CERN, the European Organization for Nuclear Research, straddling the
Franco-Swiss border near Geneva, is the largest such laboratory. Some 3000 staff and 6500
scientists from 500 universities, half of the world’s particle physicists, use CERN’s facilities
(Figure 1.2). Its annual budget of 600 million US-$ is financed by 20 member states and
some 30 associate states.

The LHC project requires unprecedented computing resources, and involves substantially
more remote researchers and institutions than any prior project. To make their collaboration
viable, it was decided to share in a global joint effort the data and locally available resources of
all participating laboratories and university departments. Because the technology necessary
to achieve this goal was only partially available at the time, the European DataGrid project
(EDG) was born. Relevant parts of the detector data are distributed from CERN to associate
laboratories, organized into a multi-tier architecture sketched in Figure 1.3.

The fundamental value proposition of computer systems has long been their potential
to automate well-defined repetitive tasks. With the advent of distributed computing, the
Internet and web technologies in particular, the focus has been broadened. Increasingly,
computer systems are seen as enabling tools for effective long distance communication and
collaboration. Colleagues (and programs) with shared interests can better work together,
with less respect to the physical location of themselves and required devices and machinery.
The traditional departmental team is complemented by cross-organizational virtual teams,
operating in an open, transparent manner. Such teams have been termed virtual organizations

4 CHAPTER 1. INTRODUCTION

Figure 1.3: Multi-Tier Architecture of European DataGrid.

[5]. This opportunity to further extend knowledge appears natural to science communities
since they have a deep tradition in drawing their strength from stimulating partnerships
across administrative boundaries.

Grid technology attempts to support flexible, secure, coordinated information sharing
among dynamic collections of individuals, institutions and resources. This includes data
sharing but also includes access to computers, software and devices required by computation
and data-rich collaborative problem solving [5]. These and other advances of distributed
computing are necessary to increasingly make it possible to join loosely coupled people and
resources from multiple organizations.

As a result, many entities can now collaborate among each other to enable data analysis
of large HEP experimental data: the HEP user community and its multitude of institutions,
storage providers, as well as network, application and cycle providers. Users utilize the
services of a set of remote application providers to submit jobs, which in turn are executed
by the services of cycle providers, using storage and network provider services for I/O. The
services necessary to execute a given task often do not reside in the same administrative
domain. Collaborations may have a rather static configuration, or they may be more dynamic
and fluid, with users and service providers joining and leaving frequently, and configurations
as well as usage policies often changing.

1.2 Background

Component oriented software development has advanced to a state where a large fraction of
the functionality required for typical applications is available through third party libraries,
frameworks and tools. These components are often reliable, well documented and maintained,
and designed with the intention to be reused and customized. For many software developers

1.2. BACKGROUND 5

the key skill is no longer hard core programming, but rather the ability to find, assess and
integrate building blocks from a large variety of third parties.

The software industry has steadily moved towards more software execution flexibility. For
example, dynamic linking allows for easier customization and upgrade of applications than
static linking. Modern programming languages such as Java use an even more flexible link
model that delays linking until the last possible moment (the time of method invocation).
Still, most software expects to link and run against third party functionality installed on the
local computer executing the program. For example, a word processor is locally installed
together with all its internal building blocks such as spell checker, translator, thesaurus and
modules for import and export of various data formats. The network is not an integral part
of the software execution model, whereas the local disk and operating system certainly are.

The maturing of Internet technologies has brought increased ease-of-use and abstrac-
tion through higher-level protocol stacks, improved APIs, more modular and reusable server
frameworks and correspondingly powerful tools. The way is now paved for the next step to-
wards increased software execution flexibility. In this scenario, some components are network-
attached and made available in the form of network services for use by the general public,
collaborators or commercial customers. Internet Service Providers (ISPs) offer to run and
maintain reliable services on behalf of clients through hosting environments. Rather than
invoking functions of a local library, the application now invokes functions on remote com-
ponents, in the ideal case to the same effect.

Remote invocation is always necessary for some demanding applications that cannot (ex-
clusively) be run locally on the computer of a user because they depend on a set of resources
scattered over multiple remote domains. Examples include computationally demanding gene
sequencing, business forecasting, climate change simulation and astronomical sky surveying
as well as data-intensive High Energy Physics analysis sweeping over Terabytes of data. Such
applications can reasonably only be run on a remote supercomputer or several large comput-
ing clusters with massive CPU, network, disk and tape capacities, as well as an appropriate
software environment matching minimum standards.

The most straightforward but also most inflexible configuration approach is to hard wire
the location, interface, behavior and other properties of remote services into the local appli-
cation. Loosely coupled decentralized systems call for solutions that are more flexible and
can seamlessly adapt to changing conditions. For example, if a user turns out to be less than
happy with the perceived quality of a word processor’s remote spell checker, he/she may want
to plug in another spell checker. Such dynamic plug-ability may become feasible if service
implementations adhere to some common interfaces and network protocols, and if it is possi-
ble to match services against an interface and network protocol specification. An interesting
question then is: What infrastructure is necessary to enable a program to have the capability
to search the Internet for alternative but similar services and dynamically substitute these?

Consequently, the next step towards increased execution flexibility is the (still immature
and hence often hyped) web services vision [6, 7] of distributed computing where programs
are no longer configured with static information. Rather, the promise is that programs are
made more flexible and powerful by querying Internet databases (registries) at runtime in
order to discover information and network attached third-party building blocks. Services
can advertise themselves and related metadata via such databases, enabling the assembly of

6 CHAPTER 1. INTRODUCTION

distributed higher-level components. A natural question arises. How precisely can a local
application discover relevant remote services?

For example, a data-intensive High Energy Physics analysis application looks for remote
services that exhibit a suitable combination of characteristics, including network load, avail-
able disk quota, security options, access rights, and perhaps Quality of Service and monetary
cost. What is more, it is often necessary to use several services in combination to implement
the operations of a request. For example, a request may involve the combined use of a file
transfer service (to stage input and output data from remote sites), a replica catalog service
(to locate an input file replica with good data locality), a request execution service (to run
the analysis program) and finally again a file transfer service (to stage output data back to
the user desktop). In such cases it is often helpful to consider correlations. For example,
a scheduler for data-intensive requests may look for input file replica locations with a fast
network path to the execution service where the request would consume the input data. If a
request involves reading large amounts of input data, it may be a poor choice to use a host
for execution that has poor data locality with respect to an input data source, even if it is
very lightly loaded. How can one find a set of correlated services fitting a complex pattern of
requirements and preferences?

If one instance of a service can be made available, a natural next step is to have more
than one identical distributed instance, for example to improve availability and performance.
Changing conditions in distributed systems include latency, bandwidth, availability, location,
access rights, monetary cost and personal preferences. For example, adaptive users or pro-
grams may want to choose a particular instance of a content download service depending
on estimated download bandwidth. If bandwidth is degraded in the middle of a download,
a user may want to switch transparently to another download service and continue where
he/she left off. On what basis could one discriminate between several instances of the same
service?

In a large heterogeneous distributed system spanning multiple administrative domains, it
is desirable to maintain and query dynamic and timely information about the active partici-
pants such as services, resources and user communities. Examples are a (worldwide) service
discovery infrastructure for a DataGrid, the Domain Name System (DNS), the email in-
frastructure, the World Wide Web, a monitoring infrastructure or an instant news service.
However, the set of information tuples in the universe is partitioned over one or more database
nodes from a wide range of system topologies, for reasons including autonomy, scalability,
availability, performance and security. The goal is to exploit several independent information
sources as if they were a single source. This enables queries for information, resource and
service discovery and collective collaborative functionality that operate on the system as a
whole, rather than on a given part of it. For example, it allows a search for descriptions of
services of a file sharing system, to determine its total download capacity, the names of all
participating organizations, etc.

However, in such large distributed systems it is hard to keep track of metadata describing
participants such as services, resources, user communities and data sources. Predictable,
timely, consistent and reliable global state maintenance is infeasible. The information to
be aggregated and integrated may be outdated, inconsistent, or not available at all. Fail-
ure, misbehavior, security restrictions and continuous change are the norm rather than the

1.3. CONTRIBUTION AND ORGANIZATION OF THIS THESIS 7

exception. Consider an instant news service that aggregates news from a large variety of
autonomous remote data sources residing within multiple administrative domains. New data
sources are being integrated frequently and obsolete ones are dropped. One cannot force
control over multiple administrative domains. Reconfiguration or physical moving of a data
source is the norm rather than the exception. The question then is: How can one keep track
of and query the metadata describing the participants of large cross-organizational distributed
systems undergoing frequent change?

1.3 Contribution and Organization of this Thesis

This thesis addresses the following open problems:

• In a distributed system, it is desirable to maintain dynamic and timely information
about active participants such as services, resources and user communities. The web
service vision promises to make programs more flexible and powerful by consulting
Internet databases (registries) at runtime in order to discover information and network
attached third-party building blocks. While important advances have recently been
made in the field of web service specification [8], invocation [9] and registration [10],
the problem of how to use a rich and expressive general-purpose query language to
discover services that offer functionality matching a detailed specification has so far
received little attention.

• In a large distributed system spanning many administrative domains, the set of infor-
mation tuples in the universe is partitioned over one or more database nodes from a
wide range of system topologies, for reasons including autonomy, scalability, availabil-
ity, performance and security. Each node is populated from a large variety of unreliable,
frequently changing, autonomous and heterogeneous remote data sources. Under such
conditions, predictable, timely, consistent and reliable global state maintenance is in-
feasible. The problem of how to support expressive general-purpose discovery queries
over a view that integrates autonomous dynamic database nodes from a wide range of
distributed system topologies has so far not been addressed.

This thesis is organized into chapters as follows:

Chapter 2. The most straightforward but also most inflexible configuration approach
for invocation of remote services is to hard wire the location, interface, behavior and other
properties of remote services into the local application. Loosely coupled decentralized systems
call for solutions that are more flexible and can seamlessly adapt to changing conditions. A
key question then is:

• What distinct problem areas and processing steps can be distinguished in order to enable
flexible remote invocation in the context of service discovery?

8 CHAPTER 1. INTRODUCTION

Chapter 2 – Contribution. To establish the context, we outline eight problem areas
and their associated processing steps, namely description, presentation, publication, request,
discovery, brokering, execution and control. We propose a simple grammar (SWSDL) for
describing network services as collections of service interfaces capable of executing operations
over network protocols to endpoints. The grammar is intended to be used in the high-level
architecture and design phase of a software project. A service must present its current de-
scription so that clients from anywhere can retrieve it at any time. For broad acceptance,
adoption and easy integration of legacy services, an HTTP hyperlink is chosen as an iden-
tifier and retrieval mechanism (service link). A registry for publication and query of service
and resource presence information is outlined. Reliable, predictable and simple distributed
registry state maintenance in the presence of service failure, misbehavior or change is ad-
dressed by a simple and effective soft state mechanism. The notions of request, resource and
operation are clarified. We outline the discovery step, which finds services implementing the
operations required by a request. The brokering step determines an invocation schedule,
which is a mapping over time of unbound operations to service operation invocations using
given resources. The execution step implements a schedule. It uses the supported protocols
to invoke operations on remote services. We discuss how one can reliably support monitoring
and controlling the lifecycle of a request in the presence of a service that cannot reliably
complete a request within a short and well-known expected timeframe.

Chapter 3. In a large cross-organizational distributed system, the set of information
tuples in the universe is partitioned over one or more database nodes from a wide range
of distributed system topologies, for reasons including autonomy, scalability, availability,
performance and security. A database model is required that clarifies the relationship of the
entities in a distributed system.

The distribution and location of tuples should be transparent to a query. However, in
practice, it is often sufficient (and much more efficient) for a query to consider only a subset
of all tuples (service descriptions) from a subset of nodes. For example, a typical query may
only want to search tuples (services) within the scope of the domain cern.ch and ignore the
rest of the world. Both requirements need to be addressed by an appropriate query model.

A data model remains to be specified. It should specify what kind of data a query takes
as input and produces as output. Due to the heterogeneity of large distributed systems, the
data model should be flexible in representing many different kinds of information from diverse
sources, including structured and semi-structured data. The key problem then is:

• What kind of database, query and data model as well as query language can support
simple and complex dynamic information discovery with as few as possible architecture
and design assumptions? In particular, how can one uniformly support queries in a
wide range of distributed system topologies and deployment models, while at the same
time accounting for their respective characteristics?

Chapter 3 - Contribution. The chapter develops a database and query model as well as
a generic and dynamic data model that address the given problem. All subsequent chapters
are based on these models. Unlike in the relational model the elements of a tuple in our

1.3. CONTRIBUTION AND ORGANIZATION OF THIS THESIS 9

data model can hold structured or semi-structured data in the form of any arbitrary well-
formed XML [11] document or fragment. An individual tuple element may, but need not,
have a schema (XML Schema [12]), in which case the element must be valid according to the
schema. The elements of all tuples may, but need not, share a common schema. The concepts
of (logical) query and (physical) query scope are cleanly separated rather than interwoven.
A query is formulated against a global database view and is insensitive to link topology
and deployment model. In other words, to a query the set of all tuples appears as a single
homogenous database, even though the set may be (recursively) partitioned across many
nodes and databases. The query scope, on the other hand, is used to navigate and prune the
link topology and filter on attributes of the deployment model. A query is evaluated against
a set of tuples. The set, in turn, is specified by the scope. Conceptually, the scope is the
input fed to the query. Example service discovery queries are given. Three query types are
identified, namely simple, medium and complex. An appropriate query language (XQuery) is
suggested. The suitability of the query language is demonstrated by formulating the example
prose queries in the language. Detailed requirements for a query language supporting service
and resource discovery are given. The capabilities of various query languages are compared.

Chapter 4. In a large distributed system, a variety of information describes the state
of autonomous entities from multiple administrative domains. Participants frequently join,
leave and act on a best effort basis. Predictable, timely, consistent and reliable global state
maintenance is infeasible. The information to be aggregated and integrated may be outdated,
inconsistent, or not available at all. Failure, misbehavior, security restrictions and continuous
change are the norm rather than the exception. The key problem then is:

• How should a database node maintain information populated from a large variety of un-
reliable, frequently changing, autonomous and heterogeneous remote data sources? In
particular, how should it do so without sacrificing reliability, predictability and simplic-
ity? How can powerful queries be expressed over time-sensitive dynamic information?

Chapter 4 - Contribution. A type of database is developed that addresses the problem.
A database for XQueries over dynamic distributed content is designed and specified – the
so-called hyper registry. The hyper registry has a number of key properties. An XML data
model allows for structured and semi-structured data, which is important for integration of
heterogeneous content. The XQuery language allows for powerful searching, which is critical
for non-trivial applications. Database state maintenance is based on soft state, which en-
ables reliable, predictable and simple content integration from a large number of autonomous
distributed content providers. Content link, content cache and a hybrid pull/push commu-
nication model allow for a wide range of dynamic content freshness policies, which may be
driven by all three system components: content provider, hyper registry and client.

These key properties distinguish our approach from related work, which individually
addresses some, but not all of the above issues. Some work does not follow an XML data
model (X.500 [13], LDAP [14], MDS [15, 16], RDBMS). Sometimes the query language is
not powerful enough (UDDI [10], X.500, LDAP, MDS). Sometimes the database is not based

10 CHAPTER 1. INTRODUCTION

on soft state (RDBMS, UDDI, X.500, LDAP). Sometimes content freshness is not addressed
(RDBMS, UDDI, X.500, LDAP) or only partly addressed (MDS).

Chapter 5. Having defined all registry aspects in detail, we now proceed to the definition
of a web service layer that promotes interoperability for existing and future Internet software.
Such a layer views the Internet as a large set of services with an extensible set of well-defined
interfaces. A web service consists of a set of interfaces with associated operations. Each
operation may be bound to one or more network protocols and endpoints. The definition of
interfaces, operations and bindings to network protocols and endpoints is given as a service
description. A discovery architecture defines appropriate services, interfaces, operations and
protocol bindings for discovery. The key problem is:

• Can we define a discovery architecture that promotes interoperability, embraces industry
standards, and is open, modular, flexible, unified, non-intrusive and simple yet power-
ful?

Chapter 5 - Contribution. We propose and specify such a discovery architecture,
the so-called Web Service Discovery Architecture (WSDA). WSDA subsumes an array of
disparate concepts, interfaces and protocols under a single semi-transparent umbrella. It
specifies a small set of orthogonal multi-purpose communication primitives (building blocks)
for discovery. These primitives cover service identification, service description retrieval, data
publication as well as minimal and powerful query support. The individual primitives can
be combined and plugged together by specific clients and services to yield a wide range of
behaviors and emerging synergies. Finally, we compare in detail the properties of WSDA
with the emerging Open Grid Service Architecture [6, 17].

Chapter 6. Because the set of information tuples in the universe is partitioned over one
or more distributed nodes, it is not obvious how to enable powerful discovery query support
and collective collaborative functionality that operate on the distributed system as a whole,
rather than on a given part of it. Further, it is not obvious how to allow for search results
that are fresh, allowing dynamic content. It appears that a Peer-to-Peer (P2P) database
network may be well suited to support dynamic distributed database search, for example for
service discovery. The key problems then are:

• What are the detailed architecture and design options for P2P database searching in
the context of service discovery? What response models can be used to return matching
query results? How should a P2P query processor be organized? What query types can
be answered (efficiently) by a P2P network? What query types have the potential to
immediately start piping in (early) results? How can a maximum of results be delivered
reliably within the time frame desired by a user, even if a query type does not support
pipelining? How can loops be detected reliably using timeouts? How can a query scope be
used to exploit topology characteristics in answering a query? For improved efficiency,
how can queries be executed in containers that concentrate distributed P2P database
nodes into hosting environments with virtual nodes?

1.3. CONTRIBUTION AND ORGANIZATION OF THIS THESIS 11

• Can we devise a unified P2P database framework for general-purpose query support in
large heterogeneous distributed systems spanning many administrative domains? More
precisely, can we devise a framework that is unified in the sense that it allows to express
specific applications for a wide range of data types, node topologies, query languages,
query response modes, neighbor selection policies, pipelining characteristics, timeout
and other scope options?

Chapter 6 - Contribution. We take the first steps towards unifying the fields of database
management systems and P2P computing, which so far have received considerable, but sep-
arate, attention. We extend database concepts and practice to cover P2P search. Similarly,
we extend P2P concepts and practice to support powerful general-purpose query languages
such as XQuery [18] and SQL [19]. As a result, we propose the so-called Unified Peer-to-
Peer Database Framework (UPDF) for general-purpose query support in large heterogeneous
distributed systems spanning many administrative domains. UPDF is unified in the sense
that it allows to express specific applications for a wide range of data types, node topologies,
query languages, query response modes, neighbor selection policies, pipelining characteristics,
timeout and other scope options.

The uniformity, wide applicability and reusability of our approach distinguish it from
related work, which individually addresses some but not all problem areas. Traditional dis-
tributed systems assume a particular type of topology (e.g. hierarchical as in DNS [20],
LDAP [14]). P2P systems are built for a single application and data type and do not support
queries from a general-purpose query language. For example, DNS, Gnutella [21], Freenet
[22], Tapestry [23], Chord [24] and Globe [25] only support lookup by key (e.g. globally
unique name). Others such as SDS [26], LDAP [14] and MDS [15, 16] support simple special-
purpose query languages, leading to special-purpose solutions unsuitable for multi-purpose
service and resource discovery in large heterogeneous distributed systems spanning many
administrative domains. [27, 28, 29] discuss in isolation select neighbor selection techniques
for a particular query type, without the context of a framework for query support. LDAP
and MDS do not support essential features for P2P systems such as reliable loop detection,
non-hierarchical topologies, dynamic abort timeout, query pipelining across nodes as well as
radius scoping. None introduce a unified P2P database framework for general-purpose query
support.

Chapter 7. We describe how the operations of the P2P database framework (UPDF) and
registry XQuery interface from Section 5.2 are carried over (bound to) a network protocol. A
messaging model and network protocol describes the interactions between framework nodes.
For large distributed systems, it strongly influences system properties such as reliability,
efficiency, scalability, complexity, interoperability, extensibility and, of course, limitations in
applicability. The key problem then is:

• What messaging and communication model, as well as network protocol, uniformly sup-
port P2P database queries for a wide range of database architectures and response mod-
els such that the stringent demands of ubiquitous Internet discovery infrastructures in
terms of scalability, efficiency, interoperability, extensibility and reliability can be met?

12 CHAPTER 1. INTRODUCTION

In particular, how can one allow for high concurrency, low latency as well as early
and/or partial result set retrieval? How can one encourage resource consumption and
flow control on a per query basis?

Chapter 7 - Contribution. These problems are addressed by developing a suitable
messaging, communication and network protocol model, collectively termed Peer Database
Protocol (PDP). PDP has a number of key properties. It is applicable to any node topology
(e.g. centralized, distributed or P2P) and to multiple P2P response modes (routed response
and direct response, both with and without metadata modes). To support loosely coupled
autonomous Internet infrastructures, the model is connection-oriented (ordered, reliable, con-
gestion sensitive) and message-oriented (loosely coupled, operating on structured data). For
efficiency, it is stateful at the protocol level, with a transaction consisting of one or more
discrete message exchanges related to the same query. It allows for low latency, pipelining,
early and/or partial result set retrieval due to synchronous pull, and result set delivery in
one or more variable sized batches. It is efficient, due to asynchronous push with delivery of
multiple results per batch. It provides for resource consumption and flow control on a per
query basis, due to the use of a distinct channel per transaction. It is scalable, due to appli-
cation multiplexing, which allows for very high query concurrency and very low latency, even
in the presence of secure TCP connections. To encourage interoperability and extensibility
it is fully based on Internet Engineering Task Force (IETF) standards, for example in terms
of asynchrony, encoding, framing, authentication, privacy and reporting.

These key properties distinguish our approach from related work, which individually ad-
dress some, but not all of the above issues. We are not aware of related work that proposes a
uniform messaging model applicable to any node topology and at the same time to multiple
P2P response modes. Some related work does not apply to loosely coupled database nodes
(RDBMS). Some protocols are not stateful at the protocol level (HTTP based mechanisms).
Some do not support synchronous pull (LDAP, MDS, Gnutella, Freenet) and result set de-
livery in one or more variable sized batches (LDAP, MDS, HTTP based mechanisms). Some
do not support asynchronous push with delivery of multiple results per batch (LDAP, MDS,
HTTP based mechanisms). Some do not provide for resource consumption and flow control
on a per query basis (LDAP, MDS, Gnutella, Freenet, HTTP based mechanisms). Some lack
application multiplexing for scalable query concurrency (some RDBMS drivers, HTTP based
mechanisms). Some do not encourage interoperability and extensibility based on open IETF
standards (RDBMS, Gnutella, Freenet).

Chapter 8 summarizes the work presented in this thesis. We also outline interesting di-
rections for future research.

Due to the different scope of each chapter, we split the comparison of our work with existing
research results over the chapters 3, 4, 5, 6 and 7.

1.4. TERMINOLOGY 13

1.4 Terminology

The Internet Engineering Task Force (IETF) and World Wide Web Consortium (W3C)
use well defined terms to help unambiguous interpretation of standards specifications. Ac-
cordingly, in specification sections, the keywords ”MUST”, ”MUST NOT”, ”REQUIRED”,
”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD NOT”, ”RECOMMENDED”, ”MAY”,
and ”OPTIONAL” are to be interpreted as described in RFC-2119 [30]. This is particularly
the case in chapters 4, 5, 6 and 7, even if these keywords are spelled in lower case.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Service Discovery Processing Steps

2.1 Introduction

The most straightforward but also most inflexible configuration approach for invocation of
remote services is to hard wire the location, interface, behavior and other properties of remote
services into the local application. Loosely coupled decentralized systems call for solutions
that are more flexible and can seamlessly adapt to changing conditions. The web service
vision [6, 7] of distributed computing attempts to address the problem. Here programs
are made more flexible and powerful by querying Internet databases (registries) at runtime
in order to discover information and network attached third-party building blocks offering
needed functionality under conditions matching a specification. For example, a data-intensive
High Energy Physics analysis application looks for remote services that exhibit a suitable
combination of characteristics, including network load, available disk quota, security options,
access rights, and perhaps Quality of Service and monetary cost. A key question then is:

• What distinct problem areas and processing steps can be distinguished in order to enable
flexible remote invocation in the context of service discovery?

This introductory chapter outlines eight problem areas and their associated processing
steps, namely description, presentation, publication, request, discovery, brokering, execution
and control. We propose a simple grammar (SWSDL) for describing network services as
collections of service interfaces capable of executing operations over network protocols to
endpoints. The grammar is intended to be used in the high-level architecture and design
phase of a software project. A service must present its current description so that clients from
anywhere can retrieve it at any time. For broad acceptance, adoption and easy integration of
legacy services, an HTTP hyperlink is chosen as an identifier and retrieval mechanism (service
link). A registry for publication and query of service and resource presence information
is outlined. Reliable, predictable and simple distributed registry state maintenance in the
presence of service failure or misbehavior or change is addressed by a simple and effective
soft state mechanism. The notions of request, resource and operation are clarified. We
outline the discovery step, which finds services implementing the operations required by a
request. The brokering step determines an invocation schedule, which is a mapping over time
of unbound operations to service operation invocations using given resources. The execution
step implements a schedule. It uses the supported protocols to invoke operations on remote
services. We discuss how one can reliably support monitoring and controlling the lifecycle of

16 CHAPTER 2. SERVICE DISCOVERY PROCESSING STEPS

a request in the presence of a service that cannot reliably complete a request within a short
and well-known expected timeframe.

2.2 Description

In a distributed system, it is desirable to describe (and maintain) the active participants such
as services, resources and user communities, in order to allow for collaborative functionality.
In particular, the description of services should encourage both flexibility and interoperabil-
ity. As communications protocols and message formats are standardized on the Internet, it
becomes increasingly possible and important to be able to describe communication mecha-
nisms in some structured way. A service description language addresses this need by defin-
ing a grammar for describing network services as collections of service interfaces capable of
executing operations over network protocols to endpoints. Service descriptions provide doc-
umentation for distributed systems and serve as a recipe for automating the details involved
in application communication [8].

It is important to note that the concept of a service is a logical rather than a physical
concept. The service interfaces of a service may, but need not, be deployed on the same
host. They may be spread over multiple hosts across the LAN or WAN and even span
administrative domains. This notion allows speaking in an abstract manner about a coherent
interface bundle without regard to physical implementation or deployment decisions. We
speak of a distributed (local) service, if we know and want to stress that service interfaces are
indeed deployed across hosts (or on the same host). Typically, a service is persistent (long
lived), but it may also be transient (short lived, temporarily instantiated for the request of a
given user). Examples for a service are:

• A commodity FTP server.

• An FTP file server with an auxiliary registry interface for (secure) queries over access
logs and statistics. The registry is deployed on a centralized high availability server
that is remote to the core FTP server and shared by multiple such FTP servers of a
computing cluster.

• An HTTP frontend to a database server, augmented with an auxiliary TCP buffer size
tuning interface, as well as an event notification interface.

• A Java based HTTP process for job submission, augmented with an administration in-
terface for shutdown and a PERL daemon periodically receiving and publishing current
job status.

Description is the process of defining metadata for a thing that allows one to reason about
the thing itself. In our context, sufficient service description metadata needs to be defined
(and published) that allows a client to start communicating with the service. In support of
this goal one describes in a structured manner . . .

• Which interfaces a service offers

2.2. DESCRIPTION 17

• Which operations and arguments are defined on an interface

• How operations and arguments are bound (mapped) to network protocols and endpoints

The formalism should be sufficiently general to encourage broad acceptance and smooth
evolution. For example, it should not only support the needs of future services and protocols
(e.g. using SOAP/HTTP [9] or SOAP/BEEP [31]), but should also be able to describe the
typical operations of services using existing protocols such as FTP [32], SMTP [33], HTTP
[34] and BEEP [35, 36].

Since the purpose of this section is to expose fundamental concepts rather than syntactic
details, a precise formalism is not specified here. Instead, we now use examples to informally
introduce a modified and strongly simplified form of the Web Service Description Language
(WSDL) [8]. WSDL is a rigorous, expressive and flexible industry standard. It allows to take
advantage of existing WSDL tools for automatic generation of client and server code from
service descriptions. However, WSDL trades clarity for expressiveness and flexibility. The
example stated in [8] requires 66 XML lines and 7 levels of XML [11] nesting even though
it merely describes a stock quote service with a trivial operation that returns the trading
price of a given stock. WSDL is ill suited for compact exposition of concepts and examples.
Hence, the sole reason for introducing a new formalism here is that WSDL has the distinct
disadvantage of being very complex and verbose. We call the new formalism Simple WSDL
(SWSDL) and stress that it is a pedagogical vehicle, not an attempt to replace the standard1.
We estimate that WSDL based service descriptions are about one order of magnitude larger in
size and structural complexity than corresponding SWSDL based descriptions. All features of
SWSDL can be (and in practice will be) mapped to WSDL. Both languages are not mutually
exclusive. SWSDL is more useful in the high-level architecture and design phase of a software
project whereas WSDL is more useful for the detailed specification and implementation phase.

SWSDL describes the interfaces of a distributed service object system. For simplicity,
it offers neither a class concept nor interface inheritance. In SWSDL, a service description
defines a service as a set of related service interfaces. A service interface has an interface type.
An interface type defines a set of operations and arguments. The interface type can be used
to check whether a service interface conforms to some well-known standard. An operation is
bound to one or more protocols and network endpoints via binding definitions.

As an example, assume we have a simple scheduling service that offers an operation
submitJob that takes a job description as argument. The function should be invoked via the
HTTP protocol. A valid service description reads as follows:

<service>

<interface type = "http://gridforum.org/interface/Scheduler-1.0">

<operation>

<name>void submitJob(String jobdescription)</name>

<allow> http://cms.cern.ch/everybody </allow>

<bind:http verb="GET" URL="https://sched.cern.ch/scheduler/submitjob"/>

</operation>

</interface>

</service>

1For example, the formalism does not clarify how input and output arguments of operations can be defined
in a protocol independent type system, and how they can later be bound to a protocol dependent form.

18 CHAPTER 2. SERVICE DISCOVERY PROCESSING STEPS

The description above states that the service interface is of a scheduler type. The
precise scheduler type, including syntax and semantics of operations, is identified by the
URL http://gridforum.org/interface/Scheduler-1.0. Note that the URL is purely
an identifier. It is left unspecified what (if anything) happens upon HTTP requests to
the URL. For example, it is not required that a detailed technical paper can be found
at the interface type URL. Next, we define submitJob as being the name of the submit
operation and input and output arguments of type String. The operation is bound to
the HTTP protocol, and can be invoked by sending an HTTP GET request to the URL
https://sched.cern.ch/scheduler/submitjob (subject to local security policiy). Only
members of the CMS virtual organization are allowed to invoke this operation. For security
reasons, it is not specified who actually belongs to the CMS organization. The optional
authorization hint is purely an identifier without explicitly specified semantics.

2.3 Presentation

Having outlined the structure of a service description, we now turn to the problem of de-
scription presentation. Clearly clients from anywhere must be able to retrieve the current
description of a service (subject to security policy). Hence, a service needs to present (make
available) to clients the means to retrieve the service description. To enable clients to query
in a global context, some identifier for the service is needed. Further, a description retrieval
mechanism is required to be associated with each such identifier. Together these are the
bootstrap key (or handle) to all capabilities of a service. In principle, identifier and retrieval
mechanisms could follow any reasonable convention.

In practice, however, a fundamental mechanism such as service discovery can only hope
to enjoy broad acceptance, adoption and subsequent ubiquity if integration of legacy services
is made easy. The introduction of service discovery as a new and additional auxiliary service
capability should require as little change as possible to the large base of valuable existing
legacy services, preferable no change at all. It should be possible to implement discovery-
related functionality without changing the core service. Further, to help easy implementation
the retrieval mechanism should have a very narrow interface and be as simple as possible.

The service description concept comes to our help. In support of these requirements,
we logically separate core service functionality and presentation functionality into separate
service interfaces. Further, the identifier is chosen to be a URL, and the retrieval mechanism
is chosen to be HTTP(S). We define that an HTTP(S) GET request to the identifier must
return the current service description (subject to local security policy). In other words, a
simple hyperlink is employed. In the remainder of this thesis, we will use the term service
link for such an HTTP URL identifier enabling service description retrieval.

Because service descriptions should describe the essentials of the service, it is recom-
mended2 that the service link concept be an integral part of the description itself. As a
result, we extend the example description developed in the previous section with a Presenter

2In general, it is not mandatory for a service to implement any “standard” interface. Historical evidence
suggests that the acceptance of ubiquituous Internet infrastructures and their flexible and successful evolution
strongly depends on being conservative with the term MUST.

2.4. PUBLICATION 19

interface type. We propose that service descriptions can be retrieved via the Presenter, which
defines an operation getServiceDescription for this purpose. The operation is identical to
service description retrieval and is hence bound to (invoked via) an HTTP(S) GET request
to a given service link. Additional protocol bindings may be defined as necessary. The new
service description now reads:

<service>

<interface type = "http://gridforum.org/interface/Presenter-1.0">

<operation>

<name>XML getServiceDescription()</name>

<bind:http verb="GET" URL="https://sched.cern.ch/getServiceDescription"/>

</operation>

</interface>

<interface type ="http://gridforum.org/interface/Scheduler-1.0">

<operation>

<name>void submitJob(String jobdescription)</name>

<allow> http://cms.cern.ch/everybody </allow>

<bind:http verb="GET" URL="https://sched.cern.ch/scheduler/submitjob"/>

</operation>

</interface>

</service>

2.4 Publication

Publication is the process of making the presence of services, resources, user communities
and other metadata known to potential clients. In this specific context, it is the process of
making a service identifier and description retrieval mechanism (in practice a service link)
known to potentially interested clients so that they can retrieve the service description and
use it. We are concerned with the basic capability of making a service link (and hence
service description) reachable for clients. To this end, service links are collected in one or
more well-known registries, which are databases that can be queried by clients. Registries for
organizations or communities with special interests serve a similar purpose as link list web
pages and top-level organizational web pages: Many clients use well known and authoritative
websites (registries) as entry points for browsing and searching because they mostly contain
relevant hyperlinks (service links) for the given target community. Consequently, a particular
community can discover information relevant to its interests.

When a service starts up, it announces its presence by invoking a publish operation on
the registry. The operation takes as argument a service link to identify the service attempting
publication. The registry appends the service link if it is not already present. Conversely,
when a service shuts down it announces its unavailability by invoking a depublish operation
on the registry. The registry removes the service link if it is present. Clients can query the
registry by invoking a query operation. The simplest query operation (getLinks) takes no
arguments and returns the set of all known service links. An example result set for a query
reads:

<tupleset>

20 CHAPTER 2. SERVICE DISCOVERY PROCESSING STEPS

<tuple link="http://sched001.cern.ch/getServiceDescription"/>

<tuple link="http://sched.infn.it:8080/pub/getServiceDescription"/>

<tuple link="http://repcat.cern.ch/pub/getServiceDescription?id=4711"/>

</tupleset>

To retrieve the service descriptions of a result set, a client needs to establish a network
connection for each service link in the result set. In principle, this is no problem, but in prac-
tice it can lead to prohibitive latency, in particular in the presence of large result sets. This
is due to the very expensive nature of secure (and even insecure) connection setup. To ad-
dress this problem, we define an additional query operation (getTuples) that returns service
descriptions instead of associated service links. A registry implementation can use caching to
reduce the number of connection setups and/or can use keep-alive connections to minimize
setup time. As a consequence, this query operation may return outdated descriptions. More
importantly, it may return only a partial result set; excluding any service descriptions the
registry is not authorized to retrieve (service links are returned instead). This is the case if a
security sensitive publisher refuses to delegate authorization to the registry, but only allows
select clients to invoke its getServiceDescription operation. An example result set with
two normal services and one replica catalog service refusing trust delegation may read:

<tupleset>

<tuple link="http://sched001.cern.ch/getServiceDescription">

<content>

<service> service description A goes here </service>

</content>

</tuple>

<tuple link="http://sched.infn.it:8080/pub/getServiceDescription">

<content>

<service> service description B goes here </service>

</content>

</tuple>

<tuple link="http://repcat.cern.ch/pub/getServiceDescription?id=4711">

</tuple>

</tupleset>

In this section, we deliberately describe only the simplest type of registry. This type
roughly corresponds to the capabilities offered by the Universal Description, Discovery and
Integration (UDDI) standard [10], with the exception that an UDDI registry offers slightly
richer query capabilities and stores service descriptions rather than service links. Mainte-
nance of service links and maintenance of service descriptions are two related but distinct
concepts. Service link maintenance (SLM) is more fundamental than service description
maintenance (SDM). We argue that a registry should primarily store dynamic pointers to
external data, rather than data itself, for reasons of security, confidentiality, consistency, and
perhaps efficiency:

• SDM can easily be layered on top of SLM.

2.5. SOFT STATE PUBLICATION 21

• SLM allows keeping access control for security sensitive service descriptions in the hands
of the authoritative Presenter. SDM, on the other hand, requires trust delegation,
which potentially opens the door for a malicious audience to learn detailed enough
service descriptions to launch well-focused virus or denial of service attacks. System
administrators typically do not encourage unauthorized publication of information that
exposes existing vulnerabilities or opens new security holes.

• Service links are smaller in size than service descriptions and can be published with less
bandwidth consumption, or more often (see next section below).

• SLM reduces state consistency problems, since service links change much less frequently
than the associated service descriptions.

Clearly many different types of sophisticated query capabilities can be introduced. The
topic is discussed later in more depth. Here we only note that advanced query support
can be expressed on top of the basic capabilities introduced so far, and that such higher-level
capabilities conceptually do not belong to publication. Publication is only concerned with the
fundamental capability of making a service link reachable3 for clients. As an analogy, consider
the related but distinct concepts of web hyper-linking and web searching: Web hyper-linking
is a fundamental capability without which nothing else on the Web works. Many different
kinds of web search engines using a variety of search interfaces and strategies can and are
layered on top of web linking.

We will later also consider improvements over centralized registries by extending the
discussion to fine-grained fully distributed registries.

2.5 Soft State Publication

This section discusses mechanisms for reliable, predictable and simple distributed registry
state maintenance. In a system composed of a very large number of services, the mean time
between failures is small. Recall that the previous section proposed a model in which services
explicitly publish and de-publish as appropriate. We ignored the fact that services often
fail or misbehave, leaving a registry in an inconsistent state. For example, a service that
crashes may not de-publish with the registry, and hence clients may unnecessarily discover
and try to contact an unavailable service repeatedly. Similarly, a service may be reconfigured
to change its service link (and service description), yet it may forget to update all registries
with which it is already associated. Further, a registry may change its authorization policy
and, as a result, an already published service may suddenly no longer be in the position to
de-publish itself. All these situations leave inconsistent or stale registry state behind. It is
difficult for a registry to detect such situations and to determine when and how they can be
resolved. For example, one can envision a strategy in which a registry drops a service link
if a client (or perhaps itself) finds a service to be unavailable. However, the unavailability
may be due to an authorization policy denying access to some but not all clients, or due to

3Reachability is interpreted in the spirit of garbage collection systems: A service link is reachable for a
given client if there exists a direct or indirect retrieval path from the client to the service link.

22 CHAPTER 2. SERVICE DISCOVERY PROCESSING STEPS

problems in a small network segment or simply due to service reboot. The service owner may
be offended and claim violation of a service level agreement (SLA), because, in his opinion,
there is no reason for dropping its service. Even worse, the service owner might not even
notice for quite some time that he has been dropped. To summarize, so-called hard state
based distributed information systems populated from many independent autonomous and
heterogeneous distributed sources typically evolve quickly into garbage dumps where valid
information is hard to distinguish from trash, decreasing overall utility dramatically.

Elaborate mechanisms can be designed to cope with the problems of reliable and consistent
state maintenance. Such mechanisms typically face many complex and subtle problems.
However, one can elegantly avoid much complexity by using a simple soft state mechanism for
reliable distributed garbage collection: State established at a remote location may eventually
be discarded unless refreshed by a stream of subsequent confirmation notifications [37]. In
this manner, component failures and changes are tolerated in the normal mode of operation
rather than addressed through a separate recovery procedure [26]. Lack of refresh indicates
service failure, shutdown or change.

The responsibility for state maintenance is displaced by moving it from the registry to
the publishing services. Registries keep service links (and perhaps also descriptions) as soft
state, that is, they are kept for a limited amount of time only. Service links are tagged with
time-to-live tokens (TTLs). Service links are expired and dropped unless explicitly renewed
via periodic publication, henceforth termed refresh. Services refresh by essentially saying, “I
am still here”. Consequently, services can crash, stop, be added or changed without leaving
stale state behind indefinitely.

For example, assume service descriptions change more frequently than service links. A job
execution service publishes its current service link with a scheduler and asserts that the link
is not expected to change within the next 2 hours, and that the current service description
is not expected to change within the next 10 minutes. In other words, the service link or
description may (but need not) be dropped if the execution service should not be able to
refresh within the next 2 hours or 10 minutes, respectively. The execution service foresees
temporary network failure, acts defensively and tries to confirm its presence more often, by
refreshing its service link every 2 minutes. Even though the scheduler receives refreshes every
2 minutes, it need not retrieve and update the service description so often. It chooses to do so
only every 10 minutes. In an effort to avoid dropping failed services that eventually manage to
become available again, a (special-purpose) registry interface implementation moves expired
service links from the main database into an auxiliary database, and later retries service
description retrieval for two weeks, with exponentially growing delay between retries. Only
after two weeks, it finally gives up and completely abandons the link.

Having discussed the motivation, context and scope of publication, a detailed design and
specification can be developed. Chapter 4 is dedicated to this purpose.

2.6 Request

Let us clarify some terminology surrounding the formulation of requests from clients to use
network attached third party functionality.

2.7. DISCOVERY 23

Clients formulate requests. Examples are: “submit job”, “compute Pi with accuracy of
10000 decimals”, and “retrieve result of HTTP GET to a given URL”. Another example is
an analysis job consisting of a sequence of operations. It first uses a file transfer service (to
stage input data from remote sites), next a replica catalog service (to locate an input file
replica with good data locality), then a job execution service (to run the analysis program),
and finally again a file transfer service (to stage output data back to the user desktop).

Resources are things that can be used for a period of time, and may or may not be
renewable. They have owners, who may charge others for using resources, and they can be
shared or be exclusive. Examples include disk space, network bandwidth, specialized device
time, and CPU time [38]. Resources are made accessible through the operations of services.
Operations are consumers of resources.

Requests are hierarchical entities, and may have recursive structure; i.e., requests can
be composed of sub requests or operations, and sub requests may themselves contain sub
requests. The leaves of this structure are operations. The simplest form of a request is
one containing a single operation. The definition is derived from [38]. Sometimes complex
constraints and preferences formulated in a request description language accompany requests.

2.7 Discovery

Having formulated a request, the discovery step finds services implementing the operations
required by a request. More precisely, for each operation of a request of a given user, the
discovery step searches one or more registries and produces candidate services, which are
services (more precisely: service descriptions) that implement the operation on top of a given
set of protocols. The simplest form of candidate contains a single service implementing a
single operation on top of a single protocol.

It is often necessary to use several services in combination to implement the operations
of a request. For example, a request may involve the combined use of a file transfer service
(to stage input and output data from remote sites), a replica catalog service (to locate an
input file replica with good data locality), a request execution service (to run the analysis
program), and finally again a file transfer service (to stage output data back to the user
desktop). Hence, discovery often involves querying for several types of operations or services.

2.8 Brokering

For each operation of a request of a given user, the previous discovery step produces a set of
candidate services that implement the operation. In the following brokering step, more or less
sophisticated techniques are used to refine the selection and determine an invocation schedule.
Schedules (also termed execution plans) are mappings over time of unbound operations to ser-
vice operation invocations using given resources. One maps operations, not requests, because
requests are containers for operations, and operations are the actual resource consumers [38].
The simplest schedule contains a single service operation.

The brokering step can be as simple as randomly picking a single service from the candi-
dates, or as sophisticated as initiating a complex auction where participating services place

24 CHAPTER 2. SERVICE DISCOVERY PROCESSING STEPS

bids and negotiate a resolution based on economic models, Quality of Service (QoS) and/or
Service Level Agreements (SLAs). Consider a less ambitious example where, in an attempt
to minimize response time, the brokering step of a job scheduler compares the current CPU
load of candidate job execution services.

As mentioned above, it is often necessary to use several services in combination to imple-
ment the operations of a request. In such cases it is often helpful to consider correlations.
For example, a scheduler for data-intensive requests may look for input file replica locations
with a fast network path to the execution service where the request would consume the input
data. If a request involves reading large amounts of input data, it may be a poor choice to
use a host for execution that has poor data locality with respect to an input data source,
even if it is very lightly loaded.

An advanced job scheduler typically also matches execution services against query pat-
terns describing job requirements such as desired operating system and computer architecture
type, minimum main memory size, disk quota, availability and connectivity to third party
services like database engines, etc. Requests with complex constraints and preferences, for
tasks like job submission, are augmented with a structured request description language for
matching and ranking.

As can be seen, advanced brokering for tasks like job scheduling often requires additional
information not available as part of service descriptions. Such additional information must
be gained from other data sources. Such data sources for brokering may follow and respect
a single globally standardized data and query model. In practice, however, non-uniform
special-purpose data sources are often involved. This is due to the heterogeneous nature of
large distributed cross-organizational systems such as the Grid, the large variety of use cases,
brokering strategies and query types as well as strongly varying data freshness and data
aggregation requirements. For example, brokering information includes very slowly changing
data, such as the type of operating system, or more frequently changing quantities, such as
the number of running jobs or the current CPU utilization. In addition, the brokering process
may be highly application specific and due to its complexity not expressible in any known
query language. For example, it is hard to envisage that a negotiation process involved in
distributed auctions can be expressed as a query (rather than an algorithm). In special-
purpose areas, special matchmaking mechanisms have been developed [39].

2.9 Execution

In the previous brokering step, more or less sophisticated techniques are used to determine an
invocation schedule from candidate services. The execution step implements a schedule. The
service descriptions of the operations of a schedule are parsed, and the supported protocols
are used to invoke operations on remote services. In an attempt to cover a broad range
of existing and future protocols, invocation is understood very broadly. For example, the
operation to be invoked may be a SOAP operation carried over BEEP or HTTP(S), but
it may also simply mean issuing one of the standard commands supported by the FTP or
SMTP protocol (e.g. DELETE, GET).

In some cases more or less advanced resource reservations on a set of services can ac-

2.10. CONTROL 25

company the execution step in order to help ensure consistent execution semantics for the
operations of a request, or to guarantee a certain Quality of Service (QoS). For a detailed dis-
cussion of Quality of Service and advanced reservation see [40]. Note that services controlling
a domain can commit resources with authority, whereas services outside a control domain
cannot do so. For example, a local scheduler managing a cluster is in the position to make
definitive statements about its resource usage and policy in general. A cross-organizational
global scheduler, on the other hand, does not own any cluster, and hence cannot commit
resources with authority. Such a global scheduler can only compute schedules based on as-
sumptions and educated guesses.

2.10 Control

It is critical for practical handling of resource-intensive jobs that a disconnected mode of
operation is supported, as well as monitoring and tracking of request progress and controlling
the lifecycle of ongoing requests. Examples requiring such capabilities include a simulation
requiring a week of CPU time, transfer of a large set of files via WAN to a robotic tape
library, and an analysis sweeping over Gigabytes to Terabytes of data.

A service can implement an operation with a synchronous and/or asynchronous model of
invocation. Synchronous invocation is a call-and-wait-until-done model. The client sends a
request and blocks until the service has completed the request and the client has received the
response (or an error code). Due to its simplicity, this model is very popular. For example,
the vast majority of programming library functions and many web transactions follow it. It is
most appropriate in situations where a service can be expected to reliably complete a request
within a short and well-known timeframe. There are three types of problems related to the
synchronous model.

• Cannot monitor, control and maintain life cycle. If for some reason, no response
is received within an expected timeframe, a client usually starts wondering whether
there is a problem, what it may be and what could possibly be done to resolve it. A
client may want to ask for priority change, suspension, resumption, rescheduling or
other such lifecycle maintenance. However, a client cannot refer to the original request
without having a unique request identifier, and hence cannot establish monitor and
control connections. Consequently, there is no way for a client to find out whether the
request has been aborted incorrectly, whether it is waiting on some locked resource,
or whether it is fine and just about to be completed. Consider services accepting
heavy-duty requests or opaque and potentially unbounded requests (e.g. submission of
arbitrary executables or database queries) from a large and diverse user community.
Such services are usually fully loaded, and typically cannot give meaningful timeframes
for reliable request completion.

• Cannot work in a disconnected mode. Assume that on a Friday a user submits
a request that takes the weekend for completion. The user may want to logout or
shutdown his laptop without losing the request and come back on Monday to retrieve
results. A client shutdown may also occur due to some unexpected problem such as an

26 CHAPTER 2. SERVICE DISCOVERY PROCESSING STEPS

operating system crash. With synchronous invocation, a network connection between
client and service must be kept alive for the entire request lifecycle. If the network
connection dies for some reason, the service aborts the request. It would be useless for
the service to continue processing the request because a client would have no way to
retrieve results through subsequent control connections, as the client cannot refer to
the original request without having a unique request identifier. Synchronous invocation
is not designed to work in a disconnected mode.

• Early exhaustion of system resources. In practice, services allocate a constant
amount of system resources per request just to be able to start handling it. Examples
include a TCP connection on a port, a thread or process, and some memory. Only a
finite amount of these resources is available from the operating system, and they usually
cannot be reclaimed before request completion. Therefore, in practice there exists an
upper bound on the number of requests a service can handle concurrently. This is the
case even if most requests are waiting in a persistent queue and not running. This
upper bound is often very low (e.g. 50-1000 requests), severely limiting scalability and
leading to surprisingly early service denial errors.

A richer invocation model is needed to address these shortcomings, which we now discuss.
Asynchronous (non-blocking) invocation implements a more powerful, but also more com-

plex invocation model. The important aspect of this model is that it allows for monitoring
and tracking of request progress as well as controlling the lifecycle of ongoing requests. It
also allows for disconnected operation and low resource consumption. Bear in mind, however,
that because of its complexity the asynchronous invocation model is considered overkill for
many if not most services (e.g. replica catalog lookup service, time service, logging service,
security credential storage service). Its usage in current systems is the exception rather than
the rule. With asynchronous invocation, a client sends a request; the service accepts the
request and immediately returns a unique request handle as an identifier, even though the
request has not yet completed. The client continues to do other useful work while the service
is busy handling the request. There is now a choice of pull or push based implementation. In
the pull-based case, the active client periodically polls the passive service, checking the status
of the request identified with the given handle (e.g. queued, suspended, resumed, aborted,
percent completed). In order to enable a client to react without a need to poll repeatedly,
a push-based variant can also be used. In such a case, an active service notifies the passive
client of registered events or state transitions in the request life cycle. An asynchronous
service is well conditioned to handle large numbers of concurrent requests, because the re-
sources required per request can be kept minimal. A request moved into a persistent wait
queue requires no TCP connection, no thread and almost no memory. Although there exist
variations to the pull/push theme, they do not differ enough to warrant further exposition in
this context.

In any case, the main point is that a client can disconnect and is in the position to
monitor the status of a request, abort it if so desired, or perhaps even ask for priority change,
suspension, resumption, rescheduling or other such lifecycle maintenance.

2.11. SUMMARY 27

2.11 Summary

This introductory chapter outlines eight problem areas of service and resource discovery,
and their associated processing steps, namely description, presentation, publication, request,
discovery, brokering, execution and control.

Description. A service description language encourages flexibility and interoperability
by defining a grammar for describing network services as collections of service interfaces
capable of executing operations over network protocols to endpoints. Service descriptions
provide documentation for distributed systems and serve as a recipe for automating the
details involved in application communication. In the pedagogical SWSDL language, a service
description defines a service as a set of related service interfaces. A service interface has an
interface type. An interface type defines a set of operations and arguments. The interface type
can be used to check whether a service interface conforms to some well-known standard. An
operation is bound to one or more protocols and network endpoints via binding definitions.

Presentation. A service must present its current description so that clients from anywhere
can retrieve it at any time. An identifier and a description retrieval mechanism are the key
to all capabilities of a service. For broad acceptance, adoption and easy integration of legacy
services, an HTTP hyperlink is chosen as an identifier and retrieval mechanism (service link).
It is recommended that the service link is made an integral part of the description itself.

Publication. Publication is the process of making the presence of services, resources,
user communities and other metadata reachable to potential clients. To this end, service
links are collected in one or more well-known database registries. When a service starts up,
it announces its presence by invoking a publish operation on the registry. Clients can query
the registry by invoking a query operation.

Request. Clients formulate requests. Resources have owners, who may charge others for
using resources. Examples include disk space, network bandwidth and CPU time. Resources
are made accessible through the operations of services. Operations are consumers of resources.
Requests are composed of operations.

Discovery. The discovery step finds services implementing the operations required by
a request. More precisely, for each operation of a request of a given user, the discovery
step searches one or more registries and produces candidate services, which are services that
implement the operation on top of a given set of protocols.

Brokering. In the brokering step, more or less sophisticated techniques are used to refine
the selection and determine an invocation schedule. Schedules (also termed execution plans)
are mappings over time of unbound operations to service operation invocations using given
resources. The brokering step can be as simple as randomly picking a single service from the
candidates, or as sophisticated as initiating a complex auction. It is often necessary to use

28 CHAPTER 2. SERVICE DISCOVERY PROCESSING STEPS

several services in combination to implement the operations of a request, in which case it is
helpful to consider correlations. Sometimes requests are augmented with complex constraints
and preferences for matching and ranking.

Execution. The execution step implements a schedule. The service descriptions of the
operations of a schedule are parsed, and the supported protocols are used to invoke operations
on remote services.

Control. A service can implement an operation with a synchronous and/or asynchronous
model of invocation. Synchronous invocation is a call-and-wait-until-done model. The client
sends a request and blocks until the service has completed the request and the client has
received the response. It is most appropriate in situations where a service can be expected
to reliably complete a request within a short and well-known timeframe. The model has
three problems: It cannot monitor, control and maintain the life cycle of ongoing requests.
It cannot work in a disconnected mode. Further, it may lead to early exhaustion of system
resources. Asynchronous (non-blocking) invocation addresses these shortcomings. A client
sends a request; the service accepts the request and immediately returns a unique request
handle as an identifier, even though the request has not yet completed. The client continues
to do other useful work while the service is busy handling the request. Then (in pull-mode),
the active client periodically polls the passive service, checking the status of the request
identified with the given handle. A push-based variant can also be used.

Chapter 3

A Data Model and Query Language for
Discovery

3.1 Introduction

In a distributed system, it is desirable to maintain and query dynamic and timely informa-
tion about active participants such as services, resources and user communities. As in a data
integration system, the goal is to exploit several independent information sources as if they
were a single source. This enables information discovery and collective collaborative func-
tionality that operates on the system as a whole, rather than on a given part of it. In a large
distributed system spanning many administrative domains, the set of information tuples in
the universe is partitioned over one or more nodes from a wide range of distributed system
topologies, for reasons including autonomy, scalability, availability, performance and security.
A database model is required that clarifies the relationship of the entities in a distributed
system.

The distribution and location of tuples should be transparent to a query. However, in
practice, it is often sufficient (and much more efficient) for a query to consider only a subset
of all tuples (service descriptions) from a subset of nodes. For example, a typical query may
only want to search tuples (services) within the scope of the domain cern.ch and ignore the
rest of the world. Both requirements need to be addressed by an appropriate query model.

A data model remains to be specified. It should specify what kind of data a query takes
as input and produces as output. Due to the heterogeneity of large distributed systems
spanning many administrative domains, the data model should be flexible in representing
many different kinds of information from diverse sources, including structured and semi-
structured data. The key problem then is:

• In a large heterogeneous distributed system spanning many administrative domains,
what kind of database, query and data model as well as query language can support
simple and complex dynamic information discovery with as few as possible architectural
and design assumptions? How can one uniformly support queries in a wide range of
distributed system topologies and deployment models, while at the same time accounting
for their respective characteristics?

This chapter develops a database and query model as well as a generic and dynamic data
model that address the given problem. A distributed database framework is used where there

30 CHAPTER 3. A DATA MODEL AND QUERY LANGUAGE FOR DISCOVERY

exist one or more nodes that are interconnected with links, each node holding a database.
Unlike in the relational model the elements of a tuple in our data model can hold structured
or semi-structured data in the form of any arbitrary well-formed XML [11] document or
fragment. An individual tuple element may, but need not, have a schema (XML Schema
[12]), in which case the element must be valid according to the schema. The elements of all
tuples may, but need not, share a common schema. A tuple is a multi-purpose data container
that may contain arbitrary content. The concepts of (logical) query and (physical) query
scope are cleanly separated rather than interwoven. A query is formulated against a global
database view and is insensitive to link topology and deployment model. In other words,
to a query the set of all tuples appears as a single homogenous database, even though the
set may be (recursively) partitioned across many nodes and databases. The query scope,
on the other hand, is used to navigate and prune the link topology and filter on attributes
of the deployment model. A query is evaluated against a set of tuples. The set, in turn, is
specified by the scope. Conceptually, the scope is the input fed to the query. Example service
discovery queries are given. Three query types are identified, namely simple, medium and
complex. An appropriate query language (XQuery [18]) is suggested. The suitability of the
query language is demonstrated by formulating the example prose queries in the language.
Detailed requirements for a query language supporting service and resource discovery are
given. The capabilities of various query languages are compared.

3.2 Database and Query Model

Database Model. A distributed database framework is used where there exist one or more
nodes. Each node can operate autonomously. A node holds a set of tuples in its database.
A given database belongs to a single node. For flexibility, the databases of nodes may be
deployed in any arbitrary way (deployment model). For example, a number of nodes may
reside on the same host. A node’s database may be co-located with the node. However, the
databases of all nodes may just as well be stored next to each other on a single central data
server. The database tuples may be dynamically (re) computed on each query. A database
may be anything that accepts queries from the query model and returns results according to
the data model (see below).

The set of tuples in the universe is partitioned over the nodes, for reasons including
autonomy, scalability, availability, performance and security. Nodes are interconnected with
links in any arbitrary way. A link enables a node to query another node. A link topology
describes the link structure among nodes. The centralized model has a single node only. For
example, in a service discovery system, a link topology could tie together a distributed set of
administrative domains, each hosting a registry node holding descriptions of services local to
the domain. Figure 3.1 depicts three example link topologies, namely ring, tree and graph.
Chapter 7 outlines many more useful link topologies. Depending on the application context,
all topologies have their merits and drawbacks.

Query Model. Our query model is intended for read-only search. Insert, update and
delete capabilities are not required and not addressed. It is a general-purpose query model

3.2. DATABASE AND QUERY MODEL 31

Figure 3.1: Ring, Tree and Graph Topology [41].

that operates on tuples. Discussion in this chapter often uses examples where the term tuple
is substituted by the more concrete term service description.

In practice, it is often sufficient (and much more efficient) for a query to consider only
a subset of all tuples (service descriptions) from a subset of nodes. For example, a typical
query may only want to search tuples (services) within the scope of the domain cern.ch and
ignore the rest of the world.

However, it is a strong user requirement that queries should be as insensitive as possible to
any link topology and deployment model. In other words, a user should not need to reformu-
late a query when the node topology or deployment model changes, as is frequently the case
in large distributed systems spanning many administrative domains such as P2P networks
or cross-organizational Grids. A query model should not make any assumptions on the un-
derlying database and query processing technology. P2P query engines, distributed database
systems and centralized database systems should be able to answer the same queries. As in
a data integration system [42, 43, 44], the goal is to exploit several independent information
sources as if they were a single source. In support of these requirements, the concepts of
(logical) query and (physical) query scope are cleanly separated rather than interwoven.

• Query. A query is formulated against a global database view and is insensitive to
link topology and deployment model. In other words, to a query the set of all tuples
appears as a single homogenous database, even though the set may be (recursively)
partitioned across many nodes and databases. This means that in a relational or XML
environment, at the global level, the set of all tuples appears as a single, very large,
table or XML document, respectively.

• Query Scope. The query scope, on the other hand, is used to navigate and prune the
link topology and filter on attributes of the deployment model. Searching is primarily
guided by the query. Scope hints are used only as necessary. A query is evaluated
against a set of tuples. The set, in turn, is specified by the scope. Conceptually, the
scope is the input fed to the query. The query scope is a set and may contain anything
from all tuples in the universe to none.

A query scope is specified either directly or indirectly. For example, one can directly enu-
merate the tuples (service descriptions) to be considered. However, this is usually impractical.
One can also indirectly define a query scope by specifying a set of nodes (or Internet domain

32 CHAPTER 3. A DATA MODEL AND QUERY LANGUAGE FOR DISCOVERY

names or table names), implying that the query should be evaluated against the union of all
tuples contained in their respective databases. This corresponds to the concept of horizontally
partitioned tables extensively used in large-scale relational database systems, in particular
for distributed instances [45]. One can also indirectly specify the query scope by giving a
time deadline, implying that as many tuples as possible should be considered, but only until
the deadline has passed. Many more ways to specify a query scope can be envisioned. Both
query and scope can prune the search space, but they do so in a very different manner. More
detailed discussion is deferred to Section 6.8.

3.3 Generic and Dynamic Data Model

Generic Data Model. In a large distributed system, a registry is populated from a large
variety of heterogeneous remote data sources. The input and output of a query are instances
of a generic data model, which in our case is XML based and models a document as a tree
of nodes. XML [11] is used because one of its strengths is its flexibility in representing many
different kinds of information from diverse sources, including structured and semi-structured
data. XML is, above all else, a unifying integration technology.

The data model must be capable of modeling an XML document as well as a well-formed
fragment of a document, a sequence of documents, or a sequence of document fragments.
We note that there is no need to store tuples in XML; they just need to be presented this
way, perhaps by middleware. For example, it is common to present data from relational
databases, dynamic content generation systems and legacy command line tools as XML. A
more sophisticated system can accept queries over an XML view and internally translate the
query into SQL [46, 47, 48, 43].

The data model represents a set of tuples. A tuple has, unsurprisingly, zero or more XML
attributes and zero or more XML elements. An example tuple reads as follows:

<tuple id="123">

<patient>

<name> "Doe,John" </name>

<address> "1, South St., Palm Beach" </address>

</patient>

<record>

<entry date="1/9/90" diagnosis="amnesia"/>

</record>

</tuple>

In the relational model, a tuple has a number of column values. All tuples of all nodes
are homogenous in the sense that their column values comply with a single strongly typed
schema. In our model, this is not required. The elements (columns) of a tuple can hold
structured or semi-structured data in the form of any arbitrary well-formed XML document
or fragment. An individual tuple element may, but need not, have a schema, in which case the
element must be valid according to the schema. The elements of all tuples may, but need not,
share a common schema. An element (column) is typed (type XML), but obviously in a very
loose manner. A tuple is a multi-purpose data container that may contain arbitrary content.
Unlike in a RDBMS, a single (logical) tuple set contains all tuples. This implies that a query

3.3. GENERIC AND DYNAMIC DATA MODEL 33

need not specify a “table” or “tuple set name” to indicate the type of tuples that should
be considered. Rather, predicates within the regular query language are used to select the
desired tuples from the single set. Arguably, it is more appropriate to adopt XML parlance
and also use the term element instead of tuple. Nevertheless, continuing to use established
terminology from the relational world seems to improve clarity more than it is misleading.
Discussion in this chapter often uses examples where the term tuple is substituted by the
more concrete term service description.

The actual query is fed as input an XML representation that has the following form.

<tupleset>

zero or more tuples go here

</tupleset>

The output of a predicate query (see below) is a subset of its input. The output of a
constructive query (see below) is an arbitrary structure of the following form.

<tupleset>

zero or more XML elements go here

</tupleset>

In any case, the query engine always encapsulates the query output with a tupleset root
element. A user query need not generate this root element as it is implicitly added by the
environment.

Dynamic Data Model (DDM). In a large distributed system spanning many administra-
tive domains, a registry is populated from a large variety of unreliable, frequently changing,
autonomous and heterogeneous remote data sources. To address dynamic state maintenance
problems, we propose a Dynamic Data Model (DDM). In DDM, a tuple is an annotated multi-
purpose soft state data container that may contain a piece of arbitrary content. Examples
for content include a service description, file, picture, current network load, host information,
stock quotes, etc. Content of a given type is maintained for a given context (purpose) and
may be associated with some metadata. A tuple and its content are valid for some time span
only. At any time, the current (up-to-date) content can be retrieved from the authoritative
content provider via a dynamic pointer called a content link. The pointer can be used if stale
content is to be avoided.

The Dynamic Data Model is an instantiation of the Generic Data Model where a tuple
has as attributes a content link, a context, a type, and some time stamps. Optionally, each
tuple also has a metadata element and content extensibility element. Detailed justification
is deferred to Section 4.2. Consider the following example dynamic tuple.

Link Context Type TS1 TS2 TS3 Metadata Content

http://sched001.cern.ch/
getServiceDescription

Parent Service 10 20 30 <owner name =
”http://cms.cern.ch”/>

<service> A
< /service>

The actual query is fed as input an XML representation that has the following form
(discussion of time stamps TS is deferred).

34 CHAPTER 3. A DATA MODEL AND QUERY LANGUAGE FOR DISCOVERY

<tupleset TS4="100">

<tuple link="http://sched001.cern.ch/getServiceDescription"

type="service" ctx="parent" TS1="10" TC="15" TS2="20" TS3="30">

<content>

<service> service description A goes here </service>

</content>

<metadata>

<owner name="http://cms.cern.ch"/>

</metadata>

</tuple>

<tuple link="http://repcat.cern.ch/pub/getServiceDescription?id=4711"

type="service" ctx="child" TS1="30" TC="0" TS2="40" TS3="50">

</tuple>

<tuple link="http://monitor.cern.ch/pub/getHostInfo"

type="hostInfo" TC="65" TS1="60" TS2="70" TS3="80">

<content>

<hostInfo>

<host name="fred01.cern.ch" os="redhat 7.2" arch="i386"

mem="512M" MHz="1000" cpus="2"/>

<host name="fred02.cern.ch" os="solaris 2.7" arch="sparc"

mem="8192M" MHz="400" cpus="64"/>

</hostInfo>

</content>

</tuple>

</tupleset>

3.4 Query Examples and Types

To concretize discussion and to identify query types and requirements, we now give several
example queries related to service discovery. Queries are initially expressed in prose. They will
later be formalized in a suitable query language. One can distinguish three types of queries:
simple, medium and complex. The latter are more powerful than the former. Nevertheless,
we will see that even a simple query is a powerful tool.

Section 6.5 will later show that different execution strategies are required to answer dif-
ferent query types. In short, complex queries are not recursively partitionable and hence are
inefficient to answer without centralized database architectures. On the other hand, simple
and medium queries are recursively partitionable, and hence can also effectively be answered
in fully decentralized environments where tuples are physically partitioned among many small
and independent nodes.

Simple Query. Simple queries are most often used for discovery. A simple query finds all
tuples (services) matching a given predicate or pattern. The query visits each tuple (service
description) in a set individually, and generates a result set by applying a function to each
tuple. The function usually consists of a predicate and/or a transformation. Individual
answers are added to a (initially empty) result set. An empty answer leaves the result set
unchanged. A simple query has the following form:

3.4. QUERY EXAMPLES AND TYPES 35

R = {}

for each tuple in input

R = R UNION { function(tuple) }

endfor

return R

Example simple queries are:

• (QS1) Find all (available) services.

• (QS2) Find all services that implement a replica catalog service interface and that CMS
members are allowed to use, and that have an HTTP binding for the replica catalog
operation “XML getPFNs(String LFN)”.

• (QS4) Find all local services (all service interfaces of any given service must reside on
the same host).

• (QS5) Find all services and return their service links (instead of descriptions).

• (QS6) Find all CMS replica catalogs and return their physical file names (PFNs) for a
given logical file name (LFN); suppress PFNs not starting with “ftp://”.

• (QS7) Within the domain “cern.ch”, find all execution services and their CPU load
where cpuLoad < 0.5 (Assuming the operation cpuLoad() is defined on the execution
service).

Some typical simple queries posed to Peer-to-Peer file sharing networks are:

• (Q20) Find all MP3 music files titled “Like a virgin”.

• (Q21) Find all URLs under which replicas of a given file with identifier X (e.g. logical
file name) can be downloaded.

• (Q22) Find all MP3 music files produced by artist Madonna since 1995, where download
speed is above 100 KB/s.

In support of the wide variety of real-life questions anticipated, it should be possible to
arbitrarily combine and nest all capabilities exposed in these examples. Note that the first four
queries return service descriptions, whereas the others return additional or entirely different
information (service links, physical file names or CPU load). We term the former queries
predicate (or filter) queries. The structure of the result set is predetermined in the sense that
query output must be a subset of query input. We term the latter queries constructive queries,
because they construct answers of arbitrary structure and content. Predicate queries are a
subset of constructive queries. A constructive query function that always returns "Hello
World" or an empty string is legal, but not very useful.

Further, note that the queries QS6, QS7, QS22 involve multiple independent data sources
and match on dynamically delivered content (via remote invocation of operations getPFNs

36 CHAPTER 3. A DATA MODEL AND QUERY LANGUAGE FOR DISCOVERY

and cpuLoad), rather than on values being part of service descriptions. We call these queries
dynamic queries, as opposed to static queries. To support dynamic queries, a query language
must provide means to dynamically retrieve and interpret information from diverse remote
or local sources.

Dynamic queries can sometimes be reformulated as static queries. For example, the
LFN/PFN database information of query QS6 could be made available as part of the tuple
set. In practice, this is typically infeasible for reasons including database size, consistency,
information hiding, security and performance. Publishing highly volatile attributes such as
CPU load as part of tuples leads to stale data problems. Clearly dynamic invocation is a
more appropriate vehicle to deliver CPU load. Alternatively, custom push protocols can be
used, for example as defined in the Grid Monitoring Architecture [49].

Medium query. A medium query computes an answer over a set of tuples (service
descriptions) as a whole. For example, it can compute aggregates like number of tuples,
maximum, etc. Examples of medium queries are:

• (QM1) Find the CMS storage service with the largest network bandwidth to my host
“dummy.cern.ch” (assuming there exists a service estimating bandwidth from A to B).

• (QM2) Return the number of replica catalog services.

• (QM3) Find the two CMS execution services with minimum and maximum CPU load
and return their service descriptions and load.

• (QM4) Return the services owned by members of the black sheep list (assuming the tuple
set not only contains service descriptions, but also a set of black sheep tuples).

• (QM5) Return a summary of all replica catalogs and schedulers residing within the do-
mains “cern.ch”, “infn.it” and “anl.gov”, grouped in ascending order by owner, domain
and service type, with aggregate group cardinalities. A sample result set should look as
follows:

<tupleset>

<owner name="alice.org" domainCount="2">

<domain name="cern.ch" typeCount="2">

<type name="http://gridforum.org/interface/ReplicaCatalog-1.0"

serviceCount="13" />

<type name="http://gridforum.org/interface/Scheduler-1.0"

serviceCount="4" />

</domain>

<domain name="infn.it" typeCount="1">

...

</domain>

</owner>

<owner name="cms.org" domainCount="3">

...

</owner>

</tupleset>

3.5. XQUERY LANGUAGE 37

Some typical medium queries posed to Peer-to-Peer file sharing networks are:

• (Q25) Find the number of MP3 music files titled “Like a virgin” that have a size < 5
MB.

• (Q26) Find the top three MP3 music files titled “Like a virgin” with maximum bandwidth
connectivity to my host “dummy.cern.ch” and return (URL, bandwidth) pairs.

The query is applied to the set as a whole. For example, QM4 is interesting in that it
involves crossing tuple boundaries, which simple hierarchical query languages typically do
not support. Like a simple query, a medium query can be static or dynamic. It can be a
predicate query or a constructive query.

Complex query. Complex queries are most often used for advanced discovery or brokering.
Like a medium query, a complex query computes an answer over a set of tuples (service
descriptions) as a whole. However, it has powerful capabilities to combine data from multiple
sources. For example, it supports all database join flavors. Like any other query, a complex
query can be static or dynamic. It can be a predicate query or a constructive query. Example
complex queries are:

• (QC1) Find all (execution service, storage service) pairs where both services of a pair
live within the same domain. (Job wants to read and write locally).

• (QC2) Find all hosts that run more than one replica catalog with CMS as owner. (Want
to check for anomalies).

• (QC3) Find the top 10 owners of replica catalog services within the domains “cern.ch”,
“infn.it” and “anl.gov”, and return their email, together with the number of services
each of them owns, sorted by that number.

3.5 XQuery Language

XQuery [18, 50, 51, 52] is the standard XML [11] query language developed under the auspices
of the W3C. An understanding of the language is essential to the discussion in the remainder
of this thesis. However, a number of excellent introductions and compact summaries of its
features have already appeared. It is not considered valuable to generate even more. There-
fore, we repeat select portions of the XQuery specification [18] in the following subsection,
and of work by Manulescu, Florescu and Kossmann [48] in subsection “Language Features
and Examples”. Afterwards, the suitability of the language for service and resource discovery
is demonstrated by translating example simple, medium and complex prose queries to the
language.

38 CHAPTER 3. A DATA MODEL AND QUERY LANGUAGE FOR DISCOVERY

Introduction [18]

With the emergence of XML, the distinctions among various forms of information, such as
documents and databases, are quickly disappearing. XML is an extremely versatile markup
language, capable of labeling the information content of diverse data sources including struc-
tured and semi-structured documents, relational databases, and object repositories. A query
language that uses the structure of XML intelligently can express queries across all these
kinds of data, whether physically stored in XML or viewed as XML via middleware.

XQuery is designed to be a small, easily implementable language in which queries are
concise and easily understood. The language is derived from an XML query language called
Quilt [53], which in turn borrowed features from several other languages. From XPath [54]
and XQL [55] it took a path expression syntax suitable for hierarchical documents. From
XML-QL [56] it took the notion of binding variables and then using the bound variables to
create new structures. From SQL [19] it took the idea of a series of clauses based on keywords
that provide a pattern for restructuring data (the SELECT-FROM-WHERE pattern in SQL).
From OQL [57] it took the notion of a functional language composed of several different kinds
of expressions that can be nested with full generality.

XQuery is a functional language in which a query is represented as an expression. The
principal forms of expressions are as follows: XPath expressions, element constructors, FLWR
expressions, expressions involving operators and functions, conditional expressions, quantified
expressions and expressions that test or modify data types.

The input and output of a query are instances of a data model, which is also used by
XPath 2.0 [58]. A document is modeled as a tree of nodes. The data model is capable of
modeling not only an XML document but also a well-formed fragment of a document, a
sequence of documents, or a sequence of document fragments. XPath is a W3C standard
notation for navigating along ”paths” in an XML document, and is used in several XML-
related standards including XSLT [59] and XPointer [60]. The type system follows XML
Schema [12].

Language Features and Examples [48]

Path Expressions. XQuery uses XPath [54] expressions for addressing parts of an XML
document. The document("http://mysite.org/med.xml") expression retrieves the root of
the XML document situated at the given URL. document("med.xml")/record is the ordered
list of all record children of the document root; document("med.xml")//record returns the
list of record elements at any depth in the document, in document order. Within a list, an
indexing operator can be used: document("med.xml")//record[1] selects the first record
in the document. A path may refer to a well-defined document, as in the previous examples,
or is interpreted with respect to the root of a current document that is deduced from the
evaluation context; the expression //entry/@ssNo retrieves the collection of values of the
ssNo attributes in all entry elements in the current document. A dereference operator is
also provided: //entry/@rel previous->entry returns all medical entries that are “pointed
at” by some other entry in the current document. Path predicates, interspersed in path
expressions, restrict the navigation; for example, //entry[date="1/9/90"] returns all the

3.5. XQUERY LANGUAGE 39

entry elements having at least one date child, whose string values is "1/9/90". A path
predicate can also select a specific range, e.g. document("med.xml")//entry[range 2 to
5] will return the second to fifth entry elements, in document order.

FILE med.xml

<medical>

<patient SSno="123">

<name> "Doe,John" </name> <dob> "1/1/1960" </dob>

<address> "1, South St., Palm Beach, FL" </address>

</patient>

<patient SSno="101">

<name> "Ale, Mary" </name> <dob> "2/6/1970" </dob>

<address> "2, Pine Rd., Bear Canyon, MN" </address>

</patient>

<record> <patientSSno> "123" </patientSSno>

<entry entID="1">

<date>"1/9/90"</> <symptoms>"fatigue, bad sleep"</>

<diagnosis> </> <medication> "blood tests" </>

</entry>

<entry entID="2" rel_previous="1">

<date>"10/9/90"</> <symptoms>"low blood iron"</>

<diagnosis> "Anemy" </> <medication> "Biofer once a day" </>

</entry>

</record>

</medical>

Operators. XQuery provides the usual set of first-order operators (arithmetic, logical and
set-oriented); the comma is a list concatenation operator. For example, (//entry, //name)
returns the concatenation of the list of all entries, followed by all names, in document order.
Second order operators in XQuery are the logical quantifiers ANY, ALL, and SORT. For exam-
ple, document("med.xml")//entry SORTY BY date DESC will return all entry elements, the
most recent first.

Element Constructors. These expressions provide for construction of new XML struc-
tures; for example, <alphalist> document("med.xml")//name </alphalist> constructs
an alphabetic list of all patient names. Syntactically, the element’s tag, attribute names and
attribute values can be gained from constants or variables, while the children are specified as
a list of arbitrary expressions.

FLWR Expressions. FLWR expressions (pronounced “flower”) consist of three parts: a
FOR-LET clause that makes variables iterate over the result of an expression or binds variables
to arbitrary expressions, a WHERE clause that allows specifying restrictions on the variables,
and a RETURN clause that can construct new XML elements as output of the query. For
example, the following query retrieves all the medical records of people with health problems
that have been related to pollution within the last ten years.

40 CHAPTER 3. A DATA MODEL AND QUERY LANGUAGE FOR DISCOVERY

FOR $r in document("med.xml")//record,

$e in $r/entry

WHERE $e/date > "1/1/90" and contains($e/diagnosis, "pollution")

RETURN <pollutionIncident> $r/@ssNo, $e/diagnosis </pollutionIncident>

Variables defined with a FOR are iterators: $r variable iterates over all the record elements,
and $e over the entries in the record associated to $r. For each ($r, $e) pair that satisfies
the condition, a new pollutionIncident element is created, containing the patient SSno and
the diagnosis. The following variant groups the interesting entries according to the patient’s
SSno.

FOR $no in distinct(document("med.xml")//record/@ssNo)

LET $recs := document("med.xml")//record[@ssNo=$no]

RETURN

<pollutionIncident> $no,

(FOR $e in $recs

WHERE $e/date > "1/1/90" and contains($e/diagnosis, "pollution")

RETURN $e/diagnosis)

</pollutionIncident>

The variable $recs, defined in the LET clause, is bound to the whole value of the expression
assigned to it. FLWR expressions allow combining data from different documents, grouping,
construction of new structure, and are natural candidates for query composition.

Functions. XQuery provides syntax for defining functions; these can be called in XQuery
queries. The syntax for a function definition is illustrated in the following example: the recur-
sive function pastEntries returns the list of all past record entries linked to a given record.
This example also features a function from the standard library, empty (other functions like
count, max, avg etc. are included).

FOR $e in document("med.xml")//record[@ssNo="123"]/entry

WHERE $e/date="1/1/1990"

RETURN pastEntries($e)

FUNCTION pastEntries(ELEMENT $e) RETURNS [ELEMENT] {

IF empty ($e/@rel_previous->entry)

THEN []

ELSE ($e/@rel_previous->entry UNION pastEntries($e/@rel_previous->entry)

}

XQuery can dynamically integrate external data sources via the document(URL) function.
The document(URL) function can be used to process the XML results of remote operations
invoked over HTTP. For example, given a service description with a getNetworkLoad()
operation, a query can match on values dynamically produced by that operation.

Simple, Medium and Complex Queries

The suitability of the query language for service and resource discovery is now demonstrated
by formulating example prose queries in the language.

3.5. XQUERY LANGUAGE 41

Simple Query. Example simple queries are:

• (QS1) Find all (available) services.

RETURN /tupleset/tuple[@type="service"]

• (QS2) Find all services that implement a replica catalog service interface and that CMS
members are allowed to use, and that have an HTTP binding for the replica catalog
operation “XML getPFNs(String LFN).

LET $repcat := "http://gridforum.org/interface/ReplicaCatalog-1.0"

FOR $tuple in /tupleset/tuple[@type="service"]

LET $s := $tuple/content/service

WHERE

SOME $op IN $s/interface[@type = $repcat]/operation SATISFIES

($op/name="XML getPFNs(String LFN)" AND $op/bindhttp/@verb="GET"

AND contains($op/allow, "http://cms.cern.ch/everybody"))

RETURN $tuple

• (QS4) Find all local services (all service interfaces of any given service must reside on
the same host).

FOR $tuple in /tupleset/tuple[@type="service"]

LET $s := $tuple/content/service

WHERE count(distinct(hostname($s/interface/operation/bindhttp/@URL))) <= 1

RETURN $tuple

• (QS5) Find all services and return their service links (instead of descriptions).

FOR $tuple in $doc/tupleset/tuple[@type="service"]

RETURN <tuple> {$tuple/attribute::*} </tuple>

• (QS6) Find all CMS replica catalogs and return their physical file names (PFNs) for a
given logical file name (LFN); suppress PFNs not starting with “ftp://”.

LET $repcat := "http://gridforum.org/interface/ReplicaCatalog-1.0"

FOR $tuple in /tupleset/tuple[@type="service"]

LET $s := $tuple/content/service

WHERE

SOME $op IN $s/interface[@type = $repcat]/operation SATISFIES

($op/name="XML getPFNs(String LFN)" AND $op/bindhttp/@verb ="GET"

AND contains($op/allow, "http://cms.cern.ch/everybody"))

RETURN

FOR $pfn IN invoke($s, $repcat, "XML getPFNs(String LFN)",

"http://myhost.cern.ch/myFile")/tupleset/PFN

WHERE starts-with($pfn, "ftp://")

RETURN $pfn

42 CHAPTER 3. A DATA MODEL AND QUERY LANGUAGE FOR DISCOVERY

Medium Query. Example medium queries are:

• (QM1) Find the CMS storage service with the largest network bandwidth to my host
“dummy.cern.ch” (assuming there exists a service estimating bandwidth from A to B).

LET $source := "dummy.cern.ch"

LET $storage := "http://gridforum.org/interface/storage-1.0"

LET $sorted := /tupleset/tuple[@type="service" AND content/service/@owner="cms.org" AND

content/service/interface/@type=$storage]

SORTBY (bandwidth($source, host(./@link)))

RETURN $sorted[last()]

DEFINE FUNCTION bandwidth($source, $dest) {

document("http://netestimator.cern.ch/estimate?source=", $source, "&dest=", $dest)

}

• (QM2) Return the number of replica catalogs services.

LET $repcat := "http://gridforum.org/interface/ReplicaCatalog-1.0"

RETURN count(/tupleset/content/service[interface/@type=$repcat])

• (QM3) Find the two CMS execution services with minimum and maximum CPU load
and return their service description and load.

LET $executor := "http://gridforum.org/interface/executor-1.0"

LET $tuples := /tupleset/tuple[@type="service" AND content/service/@owner="cms.org"

AND content/service/interface/@type=$executor]]

LET $sorted := FOR $tuple IN $tuples RETURN

<item>

{$tuple}

<load>

{invoke($tuple/content/service, $executor, "String cpuLoad()", "")}

</load>

</item> SORTBY (load)

RETURN

<min> $sorted[1] </min>

<max> $sorted[last()] </max>

• (QM4) Return a summary of all replica catalogs and schedulers residing within the do-
mains “cern.ch”, “infn.it” and “anl.gov”, grouped in ascending order by owner, domain
and service type, with aggregate group cardinalities. A sample result set should look as
follows:

<tupleset>

<owner name="alice.org" domainSize="2">

<domain name="cern.ch" typeSize="2">

<type name="http://gridforum.org/interface/ReplicaCatalog-1.0"

serviceSize="13" />

<type name="http://gridforum.org/interface/Scheduler-1.0"

serviceSize="4" />

</domain>

<domain name="infn.it" typeSize="1">

...

3.5. XQUERY LANGUAGE 43

</domain>

</owner>

<owner name="cms.org" domainSize="3">

...

</owner>

</tupleset>

A suitable XQuery reads as follows:

LET $types := ("http://gridforum.org/interface/ReplicaCatalog-1.0",

"http://gridforum.org/interface/Scheduler-1.0")

LET $alldomains := ("cern.ch", "infn.it", "anl.gov")

LET $services := /tupleset/tuple[@type="service"]/content/service[contains($alldomains,@domain)

AND contains($types,interface/@type)]

FOR $owner IN distinct($services/@owner) SORTBY (@owner)

LET $domains := distinct($services[@owner=$owner]/@domain) SORTBY (@domain)

RETURN

<owner name={$owner} domainSize={count($domains)}> {

FOR $domain IN $domains

LET $types := distinct($services[@owner=$owner AND

@domain=$domain]/interface/@type) SORTBY (@type)

RETURN

<domain name={string($domain)} typeSize={count($types)}> {

FOR $type in $types

LET $srvs := $services[@owner=$owner AND @domain=$domain AND interface/@type=$type]

RETURN

<type name={string($type)} serviceSize={count($srvs)}/>

}

</domain>

}

</owner>

Complex Query. Example complex queries are:

• (QC1) Find all (execution service, storage service) pairs where both services of a pair
live within the same domain. (Job wants to read and write locally).

LET $exeType := "http://gridforum.org/interface/executor-1.0"

LET $stoType := "http://gridforum.org/interface/storage-1.0"

FOR $executor IN /tupleset/tuple[content/service/interface/@type = $exeType],

$storage IN /tupleset/tuple[content/service/interface/@type = $stoType AND

domainName(@link) = domainName($executor/@link)]

RETURN

<pair>

{$executor}

{$storage}

</pair>

• (QC2) Find all hosts that run more than one replica catalog with CMS as owner. (Want
to check for anomalies).

44 CHAPTER 3. A DATA MODEL AND QUERY LANGUAGE FOR DISCOVERY

LET $repcat := "http://gridforum.org/interface/ReplicaCatalog-1.0"

LET $hosts := /tupleset/tuple/hostname(@link)[content/service[interface/@type = $repcat AND

content/service/@owner = "cms.org"]]

FOR host IN $hosts

RETURN <host> {$host} </host>

WHERE count(hosts[./ = $host]) > 1

3.6 Related Work

Searching deep, inter-related and/or complex data structures typically requires a powerful
query language. We estimate that WSDL based service descriptions are about one order
of magnitude larger in size and structural complexity than corresponding SWSDL based
descriptions (see Section 2.3). Consequently, the example queries posed in this chapter are
often trivial in comparison with realistic queries on WSDL data structures. Let us assess the
suitability of the query capabilities of various query languages in the context of service and
resource discovery.

LDAP. The Lightweight Directory Access Protocol (LDAP) [14] inherits its query and
data model from X.500 [13]. The data model is not dynamic and it is not XML based. No
example service discovery query except QS1 and QS5 can be expressed with the LDAP query
language. This would also be the case if LDAP were defined on an XML data model. An
example system using this query and data model is the Metacomputing Directory Service
(MDS) [15, 16].

The data model is based on the entry, which contains data about some object (e.g. a
person). An entry is composed of attributes, which have a type and one or more values.
The attribute type determines what kinds of values are legal. An entry has a mandatory
attribute, which is a hierarchical identifier termed distinguished name (DN). An example
DN is cn=Barbara Jensen, o=University of Michigan, c=US. Because of its hierarchical
nature, a DN can be seen as organizing a set of entries into a tree structure, the Directory
Information Tree (DIT). Usually the tree is organized according to political, geographical,
or organizational boundaries. For comparison, an HTTP URL with the usual attribute-value
pairs can be considered equivalent to a DN. An XML tuple with a content link corresponds
to an LDAP entry. A set of such tuples corresponds to a set of LDAP entries. Both sets can
be interpreted as a tree. Operations are provided to query, add, modify, and delete entries
from the tree.

The LDAP query language has the following capabilities. A query returns a set of match-
ing entries. A query can specify a base DN, scope, filter, timeout, maximum result set size
and the names of attributes to return for each matching entry. The base DN decides the
position in the name space tree at which the search should be started. An empty string
implies starting at the root of the tree. The scope flag indicates which entries should be
considered: just the base DN entry, all immediate descendent entries of the DN, or all entries
at or below the DN. The filter is applied to each entry selected by the scope. A filter is an
expression that logically compares (=, <=, >=) the string value of an attribute (email) with
a string constant, optionally with a substring match joker (picture*.jpg) and approximate

3.6. RELATED WORK 45

string equality test (∼). Filters can be combined with Boolean AND, OR and NOT operators.
For example, the query o=anl.gov,c=US??persons?(&(cn=Mark*)(sn=G*)) returns every
person entry whose name starts with Mark and whose surname starts with “G”.

Clearly the expressive power of this language is insufficient for service and resource dis-
covery use cases and most other non-trivial questions.

SQL. The relational data model is well suited for static centralized systems. However, it is
unsuitable for a large distributed system spanning many administrative domains, populated
from a large variety of unreliable, frequently changing, autonomous and heterogeneous remote
data sources. The relational data model does not allow for semi-structured data. All tuples
must be homogenously structured in the sense that their column values comply with a strongly
typed schema. Tuples with different schema belong to different tables. Hence, a query
cannot operate on a single (logical) set containing all tuples. A query must have out-of-
band knowledge of the relevant table names and schemas, which themselves may not be
heterogeneous but must be static, globally standardized and synchronized. This seriously
limits the applicability of the relational model in the context of autonomy, decentralization,
unreliability and frequent change.

SQL [19] is a rich and expressive general-purpose language defined over the relational
data model. In addition to the above limitations, SQL lacks hierarchical navigation as a key
feature and other capabilities such as dynamic data integration, expression nesting with full
generality as well as regular expression matching. As a result, some example queries cannot
be expressed (e.g. QS6, QM1, QM3) and most can only be expressed with extremely complex
queries over a large number of auxiliary tables, as exemplified by Figure 3.2. The same holds
for inserts and updates.

The relational data model and SQL are, for example, used in the Relational Grid Moni-
toring Architecture (RGMA) system [61] and the Unified Relational GIS Project [62].

Other. None of the example discovery queries can be satisfied with a lookup by key (e.g.
globally unique name). This is the type of query assumed in most P2P systems such as DNS
[20], Gnutella [21], Freenet [22], Tapestry [23], Chord [24] and Globe [25], leading to highly
specialized content-addressable networks centered around the theme of distributed hash table
lookup. Note further that almost no queries are exact match queries (i.e. given a flat set
of attribute values find all tuples that carry exactly the same attribute values), assumed in
systems such as SDS [26] and Jini [63]. They are also not fuzzy keyword searches, as used in
web search engines. Next, queries do not specify that at most one result should be returned.

The limited expressiveness of the above mentioned query languages allows for easy im-
plementation and some straightforward optimizations, but it also dramatically limits their
applicability and ability to cope with changing requirements, leading to a flurry of very sim-
ilar but not identical special-purpose systems, each supporting yet another narrow custom
query type. These systems may well serve a special-purpose important for a given niche,
but are unsuitable for supporting service discovery, let alone ubiquitous service and resource
discovery for a wide range of applications and user communities.

46 CHAPTER 3. A DATA MODEL AND QUERY LANGUAGE FOR DISCOVERY

The greater the number and heterogeneity of content and applications, the more important
expressive general-purpose query capabilities become. Clearly realistic ubiquitous service and
resource discovery stands and falls with the ability to express queries in a rich general-purpose
query language. More precisely, a query language suitable for service and resource discovery
should meet the requirements stated in Table 3.1 (in decreasing order of significance). As
can be seen from the table, LDAP, SQL and XPath do not meet a number of essential
requirements, whereas the XQuery language meets all requirements and desiderata posed.

Capability XQuery XPath SQL LDAP

Simple, medium and complex queries over a set of tuples yes no yes no

Query over structured and semi-structured data yes yes no yes

Query over heterogeneous data yes yes no yes

Query over XML data model yes yes no no

Navigation through hierarchical data structures (Path
Expressions)

yes yes no exact match
only

Joins (combine multiple data sources into a single result) yes no yes no

Dynamic data integration from multiple heterog. sources
such as databases, documents and remote services

yes yes no no

Data restructuring patterns (e.g. SELECT-FROM-
WHERE in SQL)

yes no yes no

Iteration over sets (e.g. FOR clause) yes no yes no

General-purpose predicate expressions (WHERE clause) yes no yes no

Nesting several kinds of expressions with full generality yes no no no

Binding of variables and creating new structures from
bound variables (LET clause)

yes no yes no

Constructive queries yes no no no

Conditional expressions (IF . . . THEN . . . ELSE) yes no yes no

Arithmetic, comparison, logical and set expressions yes, all yes yes, all log. &
string

Operations on data types from a type system yes no yes no

Quantified expressions (e.g. SOME, EVERY clause) yes no yes no

Standard functions for sorting, string, math, aggregation yes no yes no

User defined functions yes no yes no

Regular expression matching yes yes no no

Concise and easy to understand queries yes yes yes yes

Table 3.1: Capabilities of XQuery, XPath, SQL and LDAP query languages.

3.7 Summary

This chapter develops a database and query model as well as a generic and dynamic data
model that address the problems of large heterogeneous distributed system spanning many
administrative domains. A framework is used where there exist one or more autonomous
nodes, each holding a database. The databases of nodes may be deployed in any arbitrary
way according to some deployment model. For example, the databases of all nodes may be
stored next to each other on a single central data server. The set of tuples in the universe is
partitioned over the nodes. A link topology describes the link structure among nodes, which

3.7. SUMMARY 47

XQuery

FOR x in document("med.xml")/medical/patient,

y in document("med.xml")//patientSSno,

z in x/name

WHERE x/@ssno=y

RETURN z

SQL

SELECT e3.elID as $z

FROM Document d1, URI u1, Value v1, Element e1, QName q1, Value v2, Child c1, Element e2,

QName q2, Value v3, Attribute a1, Value v4, Value v5, Child c2, Element e3, QName q3,

Value v6, TransClosure tc1, Element e4, QName q4, Value v7, Child c3, Value v8

WHERE d1.docURIID=u1.uriID and u1.uriValID=v1.valID and v1.value="med.xml" and

d1.rootElemId=e1.elID and e1.elQNameID=q1.qNameID and q1.qnLocalID=v2.valID and

v2.value="medical" and c1.parentID=e1.elID and c1.childID=e2.elID and

e2.elQNameID=q2.qNameID and q2.qnLocalID=v3.valID and v3.value="patient" and

a1.attrElID=e2.elID and a2.attrNameID=v4.valID and v4.value="SSno" and

a1.attrValID=v5.valID and c2.parentID=e2.elID and c2.childID=e3.elID and

e3.elQNameID=q3.qNameID and q3.qnLocalID=v6.valID and v6.value="name" and

d1.rootElemID=tc2.parentID and tc2.childID=e4.elID and e4.elQameID=q4.qNameID and

q4.qnLocalID=e7.valueID and v7.value="patientSSno" and c3.parentID=e3.elID and

c3.childValID=v8.valID and v5.value=v8.value

Figure 3.2: Translation of Hierarchy Navigating XQuery to SQL [48].

48 CHAPTER 3. A DATA MODEL AND QUERY LANGUAGE FOR DISCOVERY

may be arbitrary. For example, in a service discovery system, a link topology such as ring,
tree or graph could tie together a distributed set of administrative domains, each hosting a
registry node holding descriptions of services local to the domain.

Unlike in the relational model the elements of a tuple in our data model can hold struc-
tured or semi-structured data in the form of any arbitrary well-formed XML document or
fragment. An individual tuple element may, but need not, have a schema, in which case the
element must be valid according to the schema. The elements of all tuples may, but need
not, share a common schema. A tuple is a multi-purpose data container that may contain
arbitrary content.

The general-purpose query model is for read-only search and operates on tuples. The
concepts of (logical) query and (physical) query scope are cleanly separated rather than
interwoven. A query is formulated against a global database view and is insensitive to link
topology and deployment model. In other words, to a query the set of all tuples appears as
a single homogenous database, even though the set may be (recursively) partitioned across
many nodes and databases. This means that in a relational or XML environment, at the
global level, the set of all tuples appears as a single, very large, table or XML document,
respectively. Unlike in a RDBMS, a single (logical) tuple set contains all tuples. This implies
that a query need not specify a “table” or “tuple set name” to indicate the type of tuples that
should be considered. Rather, predicates within the regular query language are used to select
the desired tuples from the single set. The query scope, on the other hand, is used to navigate
and prune the link topology and filter on attributes of the deployment model. A query is
evaluated against a set of tuples. The set, in turn, is specified by the scope. Conceptually,
the scope is the input fed to the query. The query scope is a set and may contain anything
from all tuples in the universe to none. A scope can be specified directly or indirectly. The
data model is XML based and models a document as a tree of nodes.

Example service discovery queries are given in prose. Three query types are identified,
namely simple, medium and complex. A simple query finds all tuples matching a given
predicate or pattern. A medium query computes an answer over a set of tuples as a whole,
allowing for use of aggregation functions. A complex query also computes an answer over a
set of tuples as a whole. However, it has powerful capabilities to combine data from multiple
sources and elements, for example through joins. Complex queries are inefficient to answer
without centralized database architectures.

An appropriate query language (XQuery) is suggested. The suitability of the query lan-
guage is demonstrated by formulating the example prose queries in the language. Detailed
requirements for a query language supporting service and resource discovery are given. The
capabilities of various query languages are compared.

Chapter 4

A Database for Discovery of Distributed
Content

4.1 Introduction

In a distributed system, it is desirable to maintain and query dynamic and timely informa-
tion about active participants such as services, resources and user communities. This enables
information discovery and collective collaborative functionality that operate on the system
as a whole, rather than on a given part of it. For example, it allows a search for descriptions
of services of a file sharing system, to determine its total download capacity, the names of
all participating organizations, etc. Example systems include a service discovery system, an
electronic market place, or an instant messaging and news service. In all these systems, a
variety of information describes the state of autonomous remote participants residing within
different administrative domains. Participants frequently join, leave and act on a best effort
basis. Discovery attempts to determine the global state of a distributed system. In a large
distributed system spanning many administrative domains, predictable, timely, consistent
and reliable global state maintenance is infeasible. The information to be aggregated and in-
tegrated may be outdated, inconsistent, or not available at all. Failure, misbehavior, security
restrictions and continuous change are the norm rather than the exception. The key problem
then is:

• How should a database node maintain information populated from a large variety of un-
reliable, frequently changing, autonomous and heterogeneous remote data sources? In
particular, how should it do so without sacrificing reliability, predictability and simplic-
ity? How can powerful queries be expressed over time-sensitive dynamic information?

In this chapter, a design and specification for a centralized type of database is developed
that is conditioned to address the problem, the so-called hyper registry. The hyper registry
is a general-purpose XQuery database with mechanisms for content caching and soft state
maintenance. The hyper registry can maintain hyperlinks and cache content pointed to by
these links. A content provider can publish a hyperlink, which in turn enables the hyper reg-
istry (and third parties) to pull (retrieve) the current content. Optionally, a content provider
can also include a copy of the current content as part of publication. The hyper registry
may support caching, for example in server pull or client push mode or both. For reliable,
predictable and simple distributed state maintenance, hyper registry tuples are maintained

50 CHAPTER 4. A DATABASE FOR DISCOVERY OF DISTRIBUTED CONTENT

as soft state. To condition for overload, limit resource consumption, and satisfy minimum
requirements on content freshness, mechanisms to throttle refresh and query frequency are
proposed, adaptively inviting more or less traffic over time. Content link, content cache,
a hybrid pull/push communication model and the expressive power of XQuery allow for a
wide range of dynamic content freshness policies, which may be driven by all three system
components: content provider, hyper registry and client.

Overall Model. A hyper registry has a database that holds a set of tuples. A tuple is
an annotated multi-purpose soft state data container that may contain arbitrary piece of
content. Examples for content include a service description formulated in SWSDL or WSDL
[8], a file, picture, current network load, host information, stock quotes, etc. Example content
is a service description that reads:

<service>

<interface type = "http://gridforum.org/interface/Scheduler-1.0">

<operation>

<name>void submitJob(String jobdescription)</name>

<allow> http://cms.cern.ch/everybody </allow>

<bind:http verb="GET" URL="https://sched.cern.ch/scheduler/submitjob"/>

</operation>

</interface>

</service>

A second example content is a list of host system information such as:

<hostInfo>

<host name="fred01.cern.ch" os="redhat 7.2" arch="i386" mem="512M" MHz="1000" cpus="2"/>

<host name="fred02.cern.ch" os="solaris 2.7" arch="sparc" mem="8192M" MHz="400" cpus="64"/>

</hostInfo>

A remote client can query a hyper registry in a query language, obtaining a set of tuples
as answer. In a given context, a content provider can publish content of a given type to one
or more hyper registries. More precisely, a content provider can publish a dynamic pointer
called a content link, which in turn enables the hyper registry and third parties to retrieve
(pull) the current content presented from the provider at any time. Optionally, a content
provider can also include a copy of the current content as part of publication (push). In any
case, a hyper registry may support caching of content.

Content caching is important for client efficiency. The hyper registry may not only keep
links but also a copy of the current content pointed to by the link. With caching, clients no
longer need to establish a network connection for each content link in a query result set in
order to obtain content. This avoids prohibitive latency, in particular in the presence of large
result sets. A hyper registry may (but need not) support caching, for example in server pull
or client push mode or both.

For reliable, predictable and simple distributed state maintenance, a hyper registry tuple
is maintained as soft state. A tuple may eventually be discarded unless refreshed by a stream
of timely confirmation notifications from the content provider [37]. To this end, a tuple carries
timestamps. A tuple is expired and removed unless explicitly renewed via timely periodic

4.2. CONTENT LINK AND CONTENT PROVIDER 51

publication, henceforth termed refresh. In other words, a refresh allows a content provider
to cause a content link and/or cached content to remain present for a further time.

To condition for overload, limit resource consumption and satisfy minimum requirements
on content freshness, mechanisms to throttle refresh and query frequency are proposed, adap-
tively inviting more or less traffic over time.

The entry barrier to participation in the system should be very low. To this end, the
system is designed to be as simple as possible at the edges of the network. A content provider
is cleanly decoupled from the hyper registry and only requires the ubiquitous HTTP protocol
for communication with a local or remote hyper registry. For example, it may be sufficient
to run an Apache server [64] and cron job to publish content1.

4.2 Content Link and Content Provider

Content Link. A content link is an HTTP(S) URL pointing to the content of a content
provider. An HTTP(S) GET request to the link must return the current content, subject
to local security policy2. In other words, a simple hyperlink is employed. In the context of
service discovery, we use the term service link to denote a content link that points to a service
description. Like in the WWW, content links can freely be chosen as long as they conform
to the HTTP URL specification [65]. Hence, they may contain the usual URL encoded
attribute-value pairs. The semantics of the structure of a given content link are opaque to a
client. Examples for content links are:

http://sched.cern.ch:8080/getServiceDescription.wsdl

https://cms.cern.ch/getServiceDescription?id=4712&cache=disable

http://sched.infn.it/getHostInfo

http://phone.cern.ch/lookup?query="select phone from book where phone=4711"

http://repcat.cern.ch/getPhysicalFileNames?lfn="myLogicalFileName"

Content Provider. A content provider offers information conforming to a homogeneous
global data model. In order to do so, it typically uses some kind of internal mediator to
transform information from a local or proprietary data model to the global data model. A
content provider can be seen as a gateway to heterogeneous content sources. The global data
model is the Dynamic Data Model (DDM) introduced in Section 3.3. Hence, content can
be structured or semi-structured data in the form of any arbitrary well-formed XML [11]
document or fragment. Individual content may, but need not, have a schema (XML Schema
[12]), in which case content must be valid according to the schema. All content may, but need
not, share a common schema. This flexibility is important for integration of heterogeneous
content.

A content provider is an umbrella term for two components, namely a presenter and a
publisher. The presenter is a service and answers HTTP(S) GET content retrieval requests
from a hyper registry or client (subject to local security policy). The publisher is a piece of

1cron is a standard Unix daemon that periodically executes programs or shell scripts according to flexible
configuration data.

2HTTP 1.1 should be supported to allow for efficient persistent connections.

52 CHAPTER 4. A DATABASE FOR DISCOVERY OF DISTRIBUTED CONTENT

code that publishes content link, and perhaps also content, to a hyper registry. The publisher
need not be a service, although it uses HTTP(S) POST for transport of communications.
The structure of a content provider and its interaction with a hyper registry and a client are
depicted in Figure 4.1 (a). Note that a client can bypass a hyper registry and directly pull
current content from a provider.

Publisher

Presenter

Mediator

Content Source

(Re)publish content link
without content or

with content (push)
via HTTP POST

Content retrieval
(pull)
via HTTP GET

Content Provider

Registry

Remote Client

H
om

ogeneous
data m

odel
H

eterogeneous
data m

odel

Query

Clients

Registry

Content
Providers

Query

(Re)publish &
Retrieve

DB
Query

a) Content Provider and Hyperlink Registry b) Registry with clients
and content providers

Figure 4.1: Content Provider and Hyper Registry.

cron job

Apache

XML file(s)

publish
& refresh

retrieve

monitor
thread servlet

to XML

RDBMS or LDAP

publish
& refresh

retrieve

cron job

Perl HTTP

to XML

cat /proc/cpuinfo
uname, netstat

publish
& refresh

retrieve

java mon

Replica catalog
service(s)

(re)compute
service description(s)

publish
& refresh

retrieve

servlet

Figure 4.2: Example Content Providers.

Just as in the dynamic WWW that allows for a broad variety of implementations for the
given protocol, it is left unspecified how a presenter computes content on retrieval. Content
can be static or dynamic (generated on the fly). For example, a presenter may serve the
content directly from a file or database, or from a potentially outdated cache. For increased
accuracy, it may also dynamically recompute the content on each request.

Consider the examples in Figure 4.2. A simple but nonetheless very useful content provider
uses a commodity HTTP server such as Apache to present XML content from the file system.

4.3. PUBLICATION 53

A simple cron job monitors the health of the Apache server and publishes the current state to
a hyper registry. Another example for a content provider is a Java servlet that makes available
data kept in a relational or LDAP database system. A content provider can execute legacy
command line tools to publish system state information such as network statistics, operating
system and type of CPU. Another example for a content provider is a network service such as
a replica catalog that (in addition to servicing replica lookup requests) publishes its service
description and/or link so that clients may discover and subsequently invoke it.

Figure 4.1 (b) illustrates a hyper registry with several content providers and clients.
Providers and hyper registries can be deployed and configured arbitrarily. For example, in
a strategy for scalable administration of large cluster environments, a single shared Apache
web server can easily be configured to serve XML descriptions of thousands of services on
hundreds of hosts. For example, via a naming convention we can assign a distinct web
server directory and corresponding service link for each host-service combination. To serve
descriptions it is sufficient to have some administrative cron job run periodically on each
service host, which writes the current service description into an appropriate XML file in the
appropriate directory on the web server.

Presenter and publisher are not required to run in the same process or even on the same
host. For efficiency, a so-called container of a virtual hosting environment may be used to
run more than one provider in the same process or thread. For example, a highly efficient
and scalable container such as the Apache Tomcat servlet engine [66] not only can serve
many hundreds to a thousand (light-weight) concurrent requests per second on a commodity
PC, but it can also embed any number of dynamic provider types in the same process, with
each provider type being capable of serving any number of provider instances. Typically, a
provider is remote to the hyper registry. This is not a requirement, however. A provider
may also be local to the hyper registry and connect through a loop-back connection. For
further efficiency, a hyper registry may internally host any number of built in providers.
Using commodity servlet technology, any number of hyper registries can be hosted within the
same container.

4.3 Publication

In a given context, a content provider can publish content of a given type to one or more hyper
registries. More precisely, a content provider can publish a dynamic pointer called a content
link, which in turn enables the hyper registry (and third parties) to retrieve the current
content. For efficiency, the publish operation takes as input a set of zero or more tuples.
Each input tuple has a content link, a type, a context, some time stamps, and (optionally)
arbitrary metadata and content extensibility elements. Consider the following example tuple.

Link Context Type TS1 TC TS2 TS3 Metadata Content

http://sched001.cern.ch/
getServiceDescription

Parent Service 10 10 20 30 <owner name =
”http://cern.ch”/>

<service> ...
< /service>

A tuple is an annotated multi-purpose soft state data container that may contain a piece
of arbitrary content and allows for refresh of that content at any time, as depicted in Figure

54 CHAPTER 4. A DATABASE FOR DISCOVERY OF DISTRIBUTED CONTENT

4.3.

Content (optional)

Link Type Context Timestamps Metadata

HTTP GET(tuple.link) --> tuple.content
type(HTTP GET(tuple.link)) --> tuple.type

Tuple :=

Semantics :

Figure 4.3: Tuple Link allows for Refresh of Tuple Content at any time.

• Link. The content link is an HTTP(S) URL as introduced above. Given the link the
current content of a content provider can be retrieved (pulled) at any time.

• Type. The type describes what kind of content is being published (e.g. service,
application/octet-stream, image/jpeg, networkLoad, hostinfo).

• Context. The context describes why the content is being published or how it should
be used (e.g. child, parent, x-ireferral, gnutella, monitoring). For example,
the parent and child context will later be used for top down query routing through
node topologies with explicit hierarchical structure. Note that it is often not meaningful
to embed context information in the content itself, because a given content can be
published in a different context at different hyper registries (1:N association). For
example, a service can be a child of some nodes and at the same time be a parent
for some other nodes. However, its service description (content) should clearly remain
invariant. In addition, context and type allow a query to differente on crucial attributes
even if content caching is not supported or not authorized3.

• Timestamps TS1, TS2, TS3, TC. Discussion of timestamps is deferred to Section
4.6 below.

• Metadata. The metadata element further describes the content and/or its retrieval
beyond what can be expressed with the previous attributes. For example, the metadata
may be a secure digital signature [68] of the content. It may describe the authoritative
content provider or owner of the content. Another metadata example is a Web Service
Inspection Language (WSIL) document [69] or fragment thereof, specifying additional

3For clarity of exposition, the examples given here use short strings as values for type and con-
text (e.g. service, parent). However, strictly speaking, this is not legal. To avoid namespace pol-
lution and ambiguities, the value of a type must be a universally unique URI [65], a MIME content-
type [67] (e.g. application/octet-stream, image/jpeg, audio/mpeg) or the empty string. For XML
content observing an XML Schema [12] the type must equal the URI of the schema namespace. The
value of a context must be a URI or the empty string. For example, a service description really is of
type http://gridforum.org/content-type/service-1.0 whereas the parent context really has the value
http://gridforum.org/content-context/parent-1.0. The idea is not new. For example, HTTP, SMTP,
XML namespaces and schema types [12] employ the same approach towards identifiers.

4.3. PUBLICATION 55

content retrieval mechanisms beyond HTTP content link retrieval. The metadata ar-
gument may be any well-formed XML document or fragment. It is an extensibility
element enabling customization and flexible evolution. It is optional.

• Content. Given the link the current content of a content provider can be retrieved
(pulled) at any time. Optionally, a content provider can also include a copy of the
current content as part of publication (push). For clarity of exposition, the published
content is an XML element4.

According to the Dynamic Data Model defined in Section 3.3, an XML representation for
the set of tuples is used. Consider the following example tuple set:

<tupleset>

<tuple link="http://registry.cern.ch/getServiceDescription"

type="service" ctx="parent" TS1="10" TC="15" TS2="20" TS3="30">

<content>

<service>

<interface type ="http://gridforum.org/interface/Presenter-1.0">

<operation>

<name>XML getServiceDescription()</name>

<bind:http verb="GET" URL="https://registry.cern.ch/getServiceDescription"/>

</operation>

</interface>

<interface type = "http://gridforum.org/interface/XQuery-1.0">

<operation>

<name> XML query(XQuery query)</name>

<bind:beep URL="beep://registry.cern.ch:9000"/>

</operation>

</interface>

</service>

</content>

<metadata>

<owner name="http://cms.cern.ch"/>

</metadata>

</tuple>

<tuple link="http://repcat.cern.ch/getServiceDescription?id=4711"

type="service" ctx="child" TS1="30" TC="0" TS2="40" TS3="50">

</tuple>

</tupleset>

The publish operation of a hyper registry has the following signature:

void publish(XML tupleset)

4In the general case (allowing non-text based content types such as image/jpeg), the content is a MIME
object. The XML based publication input set and query result set is augmented with an additional MIME
multipart object [67], which is a list containing all content. The content element of the result set is interpreted
as an index into the MIME multipart object. A typical hyper registry that supports caching can handle
content with at least MIME content-type text/xml and text/plain.

56 CHAPTER 4. A DATABASE FOR DISCOVERY OF DISTRIBUTED CONTENT

Within a tuple set, a tuple is uniquely identified by its tuple key, which is the pair (content
link, context). If a key does not already exist on publication, a tuple is inserted into the
hyper registry database. An existing tuple can be updated by publishing other values under
the same tuple key. An existing tuple (key) is “owned” by the content provider that created
it with the first publication. It is recommended that a content provider with another identity
must not be permitted to publish or update the tuple.

4.4 Query

Minimalist Query. As a minimum, clients can query the hyper registry by invoking min-
imalist query operations such as getTuples. The getTuples query operation takes no argu-
ments and returns the full set of all published tuples “as is”. That is, query output format
and publication input format are the same. If supported, output includes cached content. An
example result set for a query reads (discussion of timestamps attributes TS is again deferred
to Section 4.6 below):

<tupleset TS4="100">

<tuple link="http://sched001.cern.ch/getServiceDescription"

type="service" ctx="parent" TS1="10" TC="15" TS2="20" TS3="30">

<content>

<service> service description A goes here </service>

</content>

<metadata>

<owner name="http://cms.cern.ch"/>

</metadata>

</tuple>

<tuple link="http://repcat.cern.ch/pub/getServiceDescription?id=4711"

type="service" ctx="child" TS1="30" TC="0" TS2="40" TS3="50">

</tuple>

<tuple link="http://repcat.cern.ch/pub/getStatistics"

type="repcatStats" TS1="60" TC="65" TS2="70" TS3="80">

<content>

<repcatStats host="repcat.cern.ch" avgHitsPerMin="1000">

<dbsize countLFNs="100000" countPFNs="100000000"/>

</repcatStats>

</content>

</tuple>

<tuple link="http://monitor.cern.ch/pub/getHostInfo"

type="hostInfo" TC="65" TS1="60" TS2="70" TS3="80">

<content>

<hostInfo>

<host name="fred01.cern.ch" os="redhat 7.2" arch="i386"

mem="512M" MHz="1000" cpus="2"/>

<host name="fred02.cern.ch" os="solaris 2.7" arch="sparc"

mem="8192M" MHz="400" cpus="64"/>

</hostInfo>

</content>

4.5. CACHING 57

</tuple>

</tupleset>

The getLinks query operation is similar in that it also takes no arguments and returns
the full set of all tuples. However, it always substitutes an empty string for cached content.
In other words, the content is omitted from tuples, potentially saving substantial bandwidth.
The second tuple in the example above has such a form.

XQuery. Clearly many kinds of sophisticated query capabilities can be introduced. Ad-
vanced query support can be expressed on top of the basic capabilities introduced so far.
Here we assume that a node has the advanced capability to execute XQueries over the set of
tuples it holds in its database. The XQuery language allows for powerful searching, which
is critical for non-trivial applications. Example XQueries have already been given in Section
3.5. The same rules that apply to minimalist queries also apply to XQuery support. An
implementation might use a modular and simple XQuery processor such as Quip [70] for an
operation such as XML query(XQuery query). Because not only content, but also content
link, context, type, time stamps, metadata etc. are part of a tuple, a query can also select
on this information.

Deployment. For flexibility, a hyper registry may be deployed in any arbitrary way (de-
ployment model). For example, the database can be kept in a XML file, in the same format
as returned by the getTuples query operation. However, tuples can certainly also be kept
in a remote relational database (table), for example as follows:

Link Context Type TS1 TC TS2 TS3 Metadata Content

http://sched001.cern.ch/
getServiceDescription

Parent Service 10 15 20 30 <owner name =
”http://cms.cern.ch”/>

<service> A
< /service>

http://sched.infn.it:8080/
pub/getServiceDescription

Child Service 20 25 30 40 null <service> B
< /service>

http://repcat.cern.ch/pub/
getServiceDescrip-
tion?id=4711

Child Service 30 0 40 50 null null

http://repcat.cern.ch/pub/
getStatistics

Null RepStats 60 65 70 80 null <repcatStats>
...
</repcatStats>

4.5 Caching

Content caching is important for client efficiency. The hyper registry may not only keep
content links but also a copy of the current content pointed to by the link. With caching,
clients no longer need to establish a network connection for each content link in a query result
set in order to obtain content. This avoids prohibitive latency, in particular in the presence
of large result sets. A hyper registry may (but need not) support caching. A hyper registry
that does not support caching ignores any content handed from a content provider. It keeps
content links only. Instead of cached content it returns empty strings. Cache coherency issues

58 CHAPTER 4. A DATABASE FOR DISCOVERY OF DISTRIBUTED CONTENT

arise. The query operations of a caching hyper registry may return tuples with stale content,
i.e. content that is out of date with respect to its master copy at the content provider.

A caching hyper registry may implement a strong or weak cache coherency policy. A
strong cache coherency policy is server invalidation [71]. Here a content provider notifies the
hyper registry with a publication tuple whenever it has locally modified the content. We use
this approach in an adapted version where a caching hyper registry can operate according to
the client push pattern (push hyper registry) or server pull pattern (pull hyper registry) or a
hybrid thereof. The respective interactions are as follows:

• Pull Hyper Registry. A content provider publishes a content link. The hyper registry
then pulls the current content via content link retrieval into the cache. Whenever the
content provider modifies the content, it notifies the hyper registry with a publication
tuple carrying the time the content was last modified. The hyper registry may then
decide to pull the current content again, in order to update the cache. It is up to the
hyper registry to decide if and when to pull content. A hyper registry may pull content
at any time. For example, it may dynamically pull fresh content for tuples affected by
a query. This is important for frequently changing dynamic data such as network load.

• Push Hyper Registry. A publication tuple pushed from a content provider to the
hyper registry contains not only a content link but also its current content. Whenever
a content provider modifies content, it pushes the new content to the hyper registry,
which may update the cache accordingly5.

• Hybrid Hyper Registry. A hybrid hyper registry implements both pull and push
interactions. If a content provider merely notifies that its content has changed, the
hyper registry may choose to pull the current content into the cache. If a content
provider pushes content, the cache may be updated with the pushed content. This is
the type of hyper registry subsequently assumed whenever a caching hyper registry is
discussed.

A non-caching hyper registry ignores content elements, if present. A publication is said
to be without content if the content is not provided at all. Otherwise, it is said to be with
content. Publication without content implies that no statement at all about cached content
is being made (neutral). It does not imply that content should not be cached or invalidated.

A client must not assume that content is cached. For example, a hyper registry may not
implement caching or it may be denied authorization when attempting to retrieve a given
content, or it may ignore content provided on provider push. While it may be harmless

5If a push hyper registry does not also implement the pull pattern for hybrid behavior, the content link
may (but need not) merely serve as an identifier for the content. As far as the hyper registry is concerned,
the link need not be alive and point to meaningful content, because it never pulls anyway. The example
host information content given previously may be identified by a unique but non-existing content link such as
http://fred.cern.ch/blabla. The hyper registry may be used as a “dumb” repository into which content
providers store information that cannot or should not be retrieved directly from the provider itself. In other
words, the cache may be (ab)used as content store. It is meaningless to have a push hyper registry that does
not implement “caching”.

4.6. SOFT STATE 59

that potentially anybody can learn that some content exists (content link), stringent trust
delegation policies may dictate that only a few select clients, not including the hyper registry,
are allowed to retrieve the content from a provider. Consider for example, that a detailed
service description may be helpful for launching well-focused security attacks. In addition, a
hyper registry may have an authorization policy. For example, depending on the identity of a
client, a registry may return a subset of the full result set or hide cached content and instead
return the tuple substituted by empty content. Similarly, depending on content provider
identity, pushed content may be ignored or rejected, or publication denied altogether.

4.6 Soft State

For reliable, predictable and simple distributed state maintenance, a hyper registry tuple is
maintained as soft state. A tuple may eventually be discarded unless refreshed by a stream
of timely confirmation notifications from a content provider. To this end, a tuple carries
timestamps. A tuple is expired and removed unless explicitly renewed via timely periodic
publication, henceforth termed refresh. In other words, a refresh allows a content provider
to cause a content link and/or cached content to remain present a for a further time.

The strong cache coherency policy server invalidation is extended. For flexibility and ex-
pressiveness, the ideas of the Grid Notification Framework [37] are adapted. The publication
operation takes four absolute time stamps TS1, TS2, TS3, TC per tuple6.

The semantics are as follows. The content provider asserts that its content was last
modified at time TS1 and that its current content is expected to be valid from time TS1
until at least time TS2. It is expected that the content link is alive between time TS1 and
at least time TS3. Time stamps must obey the constraint TS1 ≤ TS2 ≤ TS3. TS2 triggers
expiration of cached content, whereas TS3 triggers expiration of content links. Usually, TS1
equals the time of last modification or first publication, TS2 equals TS1 plus some minutes
or hours, and TS3 equals TS2 plus some hours or days. For example, TS1, TS2 and TS3 can
reflect publication time, 10 minutes, and 2 hours, respectively.

A tuple also carries a timestamp TC that indicates the time when the tuple’s embedded
content (not the provider’s master copy of the content) was last modified, typically by the
last intermediary in the path between client and content provider (e.g. the hyper registry).
If a content provider publishes with content, then we usually have TS1=TC. TC must be zero-
valued if the tuple contains no content. Hence, a hyper registry not supporting caching always
has TC set to zero. For example, a highly dynamic network load provider may publish its
link without content and TS1=TS2 to suggest that it is inappropriate to cache its content.
Constants are published with content and TS2=TS3=infinity, TS1=TC=currentTime. These
soft state time stamp semantics are summarized in Table 4.1.

Insert, update and delete of tuples occur at the timestamp-driven state transitions sum-
marized in Figure 4.4. Within a tuple set, a tuple is uniquely identified by its tuple key, which

6To allow for meaningful comparison, sources generating time stamps and sinks processing time stamps
must be synchronized, for example using the NTP network time protocol [72]. Further, they must share a
common representation of time, for example as proposed in [73]. We subsequently assume a straightforward
standard representation: the difference, measured in milliseconds, between the given UTC time and midnight,
January 1, 1970 UTC.

60 CHAPTER 4. A DATABASE FOR DISCOVERY OF DISTRIBUTED CONTENT

Time Stamp Semantics

TS1 Time content provider last modified content

TC Time embedded tuple content was last modified (e.g. by an intermediary)

TS2 Expected time while current content at provider is at least valid

TS3 Expected time while content link at provider is at least valid (alive)

Table 4.1: Soft State Time Stamp Semantics.

is the pair (content link, context). A tuple can be in one of three states: unknown, not
cached, or cached. A tuple is unknown if it is not contained in the hyper registry (i.e. its
key does not exist). Otherwise, it is known. When a tuple is assigned not cached state, its
last internal modification time TC is (re)set to zero and the cache is deleted, if present. For
a not cached tuple we have TC < TS1. When a tuple is assigned cached state, the content is
updated and TC is set to the current time. For a cached tuple, we have TC ≥ TS1.

Pub
lis

h
with

ou
t c

on
te

nt
Publish with content (push)

Publish with content (push)
Retrieve (pull)

currentTime > TS2
TS1 > TC

cu
rre

nt
Ti

m
e

>
TS3

UNKNOWN

CACHEDNOT CACHED

Publish without content

Publish with content (push)
Publish without content
Retrieve (pull)

Figure 4.4: Soft State Transitions.

A tuple moves from unknown to cached or not cached state if the provider publishes
with or without content, respectively. A tuple becomes unknown if its content link expires
(currentTime > TS3); the tuple is then deleted. A provider can force tuple deletion by
publishing with currentTime > TS3. A tuple is upgraded from not cached to cached state if
a provider push publishes with content or if the hyper registry pulls the current content itself
via retrieval. On content pull, a hyper registry may leave TS2 unchanged, but it may also
follow a policy that extends the lifetime of the tuple (or any other policy it sees fit). A tuple
is degraded from cached to not cached state if the content expires. Such expiry occurs when
no refresh is received in time (currentTime > TS2), or if a refresh indicates that the provider
has modified the content (TC < TS1). The following pseudo-code illustrates publication and
pull retrieval:

publish(..., TS1’, TS2’, TS3’, content’) :=

if unknown then setContent(null)

if content’ != null then setContent(content’)

TS1 = TS1’, TS2 = TS2’, TS3 = TS3’

trigger time driven state transitions ...

4.7. FLEXIBLE FRESHNESS 61

pull(content’) :=

setContent(content’)

if policy = "extend lifetime" then TS2 = currentTime() + 60 seconds

trigger time driven state transitions ...

setContent(content’) :=

content = content’

if content = null then state = not cached, TC = 0

else state = cached, TC = currentTime()

If a hyper registry receives multiple relevant publication tuples about a particular tuple
key (i.e. (content link, context) pair), only the tuple with the most recent TS1 is consid-
ered (update). The other tuples referring to the key are discarded. Finally, note that strictly
speaking, a hyper registry may interpret time stamps as hints rather than orders. This allows
avoiding abuse by providers, for example via infinite time stamps.

4.7 Flexible Freshness

Content link, content cache, a hybrid pull/push communication model and the expressive
power of XQuery allow for a wide range of dynamic content freshness policies, which may
be driven by all three system components: content provider, hyper registry and client. All
three components may indicate how to manage content according to their respective notions
of freshness.

For example, a content provider can model the freshness of its content via pushing appro-
priate timestamps and content. A hyper registry can model the freshness of its content via
controlled acceptance of provider publications and by actively pulling fresh content from the
provider. If a result (e.g. network statistics) is up to date according to the hyper registry,
but out of date according to the client, the client can pull fresh content from providers as
it sees fit. However, this is inefficient for large result sets. Nevertheless, it is important for
clients that query results are returned according to their notion of freshness, in particular in
the presence of frequently changing dynamic content.

Recall that it is up to the hyper registry to decide to what extent its cache is stale, and
if and when to pull fresh content. For example, a hyper registry may implement a policy
that dynamically pulls fresh content for a tuple whenever a query touches (affects) the tuple.
For example, if a query interprets the content link URL as an identifier within a hierarchical
name space (e.g. as in LDAP) and selects only tuples within a sub-tree of the name space,
only these tuples should be considered for refresh. The more powerful a query language, the
more complex is the required logic for query parsing, analysis, decomposition and merging,
etc.

Refresh-on-client-demand. So far, a hyper registry must guess what a client’s notion
of freshness might be, while at the same time maintaining its decisive authority. A client still
has no way to indicate (as opposed to force) its view of the matter to a hyper registry. We
propose to address this problem with a simple and elegant refresh-on-client-demand strategy

62 CHAPTER 4. A DATABASE FOR DISCOVERY OF DISTRIBUTED CONTENT

under control of the hyper registry’s authority. The strategy exploits the rich expressiveness
and dynamic data integration capabilities of the XQuery language. The client query may
itself inspect the time stamp values of the set of tuples. It may then decide itself to what
extent a tuple is considered interesting yet stale. If the query decides that a given tuple
is stale (e.g. if type="networkLoad" AND TC < currentTime() - 10), it calls the XQuery
document(URL contentLink) function with the corresponding content link in order to pull
and get handed fresh content, which it then processes in any desired way.

This mechanism makes it unnecessary for a hyper registry to guess what a client’s notion
of freshness might be. It also implies that a hyper registry does not require complex logic for
query parsing, analysis, splitting, merging, etc. Moreover, the fresh results pulled by a query
can be reused for subsequent queries. Since the query is executed within the hyper registry,
the hyper registry may implement the document function such that it not only pulls and
returns the current content, but as a side effect also updates the tuple cache in its database.
A hyper registry retains its authority in the sense that it may apply an authorization policy,
or perhaps ignore the query’s refresh calls altogether and return the old content instead. The
refresh-on-client-demand strategy is simple, elegant and controlled. It improves efficiency by
avoiding overly eager refreshes typically incurred by a guessing hyper registry policy.

This basic idea could be used in variations that are more ambitious. For example, in
an attempt to improve efficiency via “batching”, a query may collect the content links of all
tuples it considers stale into a set, and hand the set to a documents(URL[]) function provided
by the hyper registry, which then fetches fresh content in a batched fashion. Alternatively,
a query may use this approach in a non-blocking manner, merely indicating that the hyper
registry should soon refresh the given tuples (asynchronously), while the old tuples are still
fine for the current query. The theme can be developed further. In a hierarchical P2P
environment with caching nodes along the query route, it may be preferable to have the
documents(URL[]) function forward the refresh set as a query to the next node along the
query route, instead of directly pulling from the content provider. This refreshes all node
caches along the route, possibly at the expense of increased latency. As a different type of
optimization, the hyper registry may reduce latency by keeping alive the TCP connections
to content providers, which is often impractical to do for clients.

To summarize, a wide range of dynamic content freshness policies can be supported, which
may be driven by all three system components: content provider, hyper registry and client.
All three components may indicate how to manage content according to their respective
notions of freshness.

4.8 Throttling

Clearly there is a tradeoff between the resource consumption caused by refreshes and state
consistency. The higher the refresh frequency, the more consistent and up-to-date the state,
and the more resources are consumed. High frequency refresh can consume significant net-
work bandwidth, due to pathological client misbehavior, denial-of-service attacks, or sheer
popularity. Implementations using high frequency refresh rates can encounter serious latency
limitations due to the very expensive nature of secure (and even insecure) network connection

4.9. RELATED WORK 63

setup for publication. Keep-alive connections should be used to minimize setup time. How-
ever, they only partly address the problem. Consider, for example, an automatically adapting
search engine indexing one million services, each refreshing every minute with a message of
200 bytes. Just to stay up-to-date the search engine must scale to 17000 refreshes/sec and
its maintainer must pay for a WAN bandwidth of at least 3.4 MB/sec.

To condition for overload, limit resource consumption and satisfy minimum requirements
on content freshness, mechanisms to throttle refresh frequency are proposed, adaptively invit-
ing more or less traffic over time. For example, the search engine hyper registry may ask the
content providers to wait at least 100 minutes between refreshes. Conversely, a hyper reg-
istry of a job scheduler depending on very fresh CPU load measurements from job execution
services may want to invite execution service providers to refresh at least every second. For
example, the service administrator can set the aggregate bandwidth available for refresh to a
fraction of the total available system bandwidth. [74, 75] suggest to determine the maximum
refresh rate for a given source service from historic bandwidth statistics over refreshes. This
avoids overload, yet helps to maintain scalability in the number of source services.

Accordingly, the publication operation returns two time stamps TS4 and TS5, which we
call minimum idle time and maximum idle time, respectively. The semantics of the minimum
idle time are as follows: “Publication was successful, but in the future you may be dropped
and denied service if you do not wait at least until time TS4 before the next refresh”. The
semantics of the maximum idle time are as follows: “Publication was successful, but in the
future you may be dropped and denied service if you do not refresh before time TS5”. We
have minimum idle time < maximum idle time. A simple hyper registry always returns
zero and infinity as minimum idle and maximum idle time, respectively. Content providers
ignoring throttling warnings can be dropped and denied service without further notice, for
example at the local, firewall or Internet Service Provider (ISP) level. Analogously, query
operations return a minimum idle time (TS4) as part of the result set. The semantics are
as follows: “The query was successful, and here is the result set. However, in the future you
may be dropped and denied service if you do not wait at least until time TS4 before the next
query”.

4.9 Related Work

Web Proxy Caches. A weak cache coherency policy popular with web proxy caches is
adaptive TTL [71]. Here the problem is handled by adjusting the time-to-live of a content
based on observations of its lifetime. Adaptive TTL takes advantage of the fact that content
lifetime distribution tends to be bimodal; if a given content has not been modified for a
long time, it tends to stay unchanged. Thus, the time-to-live attribute of a given content is
assigned to be a percentage of the content’s current “age”, which is the current time minus
the last modified time of the document.

The “web server accelerator” [76] resides in front of one or more web servers to speed up
user accesses. It provides an API, which allows application programs to explicitly add, delete,
and update cached data. The API allows the accelerator to cache dynamic as well as static
data. Invalidating and updating cached data is facilitated by the Data Update Propagation

64 CHAPTER 4. A DATABASE FOR DISCOVERY OF DISTRIBUTED CONTENT

(DUP) algorithm, which maintains data dependence information between cached data and
underlying data in a graph [77].

RDBMS. Relational database systems provide SQL as a powerful query language. They
do not support an XML data model and the XQuery language (see Section 3.6). Further,
they do not provide soft state based publication, content caching and throttling. Content
freshness is not addressed. Our work does not compete with an RDBMS, though. A hyper
registry may well internally use an RDBMS for data management.

UDDI. UDDI (Universal Description, Discovery and Integration) [10] is an emerging in-
dustry standard that defines a business oriented access mechanism to a registry holding XML
based WSDL service descriptions. It is not designed to be a registry holding arbitrary con-
tent. UDDI is not based on soft state, which implies that there is no way to dynamically
manage and remove service descriptions from a large number of autonomous third parties in
a reliable, predictable and simple way. It does not address the fact that services often fail or
misbehave or are reconfigured, leaving a registry in an inconsistent state. Content freshness
is not addressed. As such, UDDI only appears to be useful for businesses and their customers
running static high availability services. Last, and perhaps most importantly, query support
is rudimentary. Only key lookups with primitive qualifiers are supported, which is insufficient
for realistic service discovery use cases (see Sections 3.4 and 3.5 for examples).

Jini. A Java client program begins discovery with a UDP multicast to locate instances of
the Jini Lookup Service [63]. The network protocol is not language independent because
it relies on the Java-specific object serialization mechanism. Publication is based on soft
state. Clients and services must renew their leases periodically. Content freshness is not
addressed. The query “language” allows for simple string matching on attributes, and is
even less powerful than LDAP (see Section 3.6).

SDS. The Service Discovery Service (SDS) [26] is also based on multi cast and soft state.
Content freshness is not addressed. It supports a simple XML based exact match query
type. SDS is interesting in that it mandates secure channels with authentication and traffic
encryption, and privacy and authenticity of service descriptions. SDS servers can be organized
in a distributed hierarchy. For efficiency, each SDS node in a hierarchy can hold an index of
the content of its sub-tree. The index is a compact aggregation and custom tailored to the
narrow type of query SDS can answer.

X500. X500 [13] is the big legacy brother of LDAP, sharing the same data model and
query language (see below). It was designed at a time when Internet protocols were not yet
ubiquitous. X.500 requires ISO protocols, heavyweight ASN.1 data encoding and is much
more complex than LDAP.

LDAP. The Lightweight Directory Access Protocol (LDAP) [14] defines an access mech-
anism in which clients send requests to and receive responses from LDAP servers. The

4.9. RELATED WORK 65

database is not based on soft state. Content freshness is not addressed. LDAP does not
follow an XML data model. The expressive power of the LDAP query language is insufficient
for service discovery use cases (see Sections 3.4 and 3.6) and most other non-trivial questions.

MDS. The Metacomputing Directory Service (MDS) [15, 16] is based on LDAP. As a result,
its query language is insufficient for service discovery, and it does not follow an XML data
model. MDS is based on soft state but it does not allow clients (and to some extent even
content providers) to drive registry freshness policies.

The MDS consists of an unmodified OpenLDAP [78] server with value-adding backends,
configured with a strong security library. OpenLDAP is an extensible open source LDAP
server framework into which custom backend modules can be plugged, to which LDAP re-
quests are dispatched. In terms of infrastructure, it could be seen as an early predecessor of
Java servlet container technology.

The Grid Resource Information Service (GRIS) is an OpenLDAP backend that accepts
LDAP queries from clients over its own LDAP namespace sub-tree. It is a backend into which
a list of content providers can be plugged on a per attribute basis7. An example content
provider is a shell script or program that returns the operating system version. A provider
returns results in LDIF format, which is a text-based format for LDAP import and export.
A provider can also be a module that is linked into the GRIS. A provider owns a namespace
sub tree of the GRIS and returns a set of LDAP entries within that namespace. Depending
on the namespace specified in an LDAP query, the GRIS executes (and creates the processes
for) one or more affected providers and caches the results for use in future queries. It then
applies the query against the cache. A GRIS can be statically configured to cache the pulled
content for a fixed amount of time (on a per provider basis). An example GRIS configuration
invokes the /usr/local/bin/grid-info-cpu-linux executable and caches CPU load results
for 15 seconds.

Content provider invocation follows a CGI like life cycle model. The stateless nature,
heavy weight process forking and context switches of such a model render it unsuitable for
use in dynamic environments with high frequency refreshes and requests [79].

The Grid Index Information Service (GIIS) allows constructing and querying hierarchical
LDAP directories by plugging together several GRIS (or GIIS) instances. A GRIS can publish
a soft state description of itself in order to be added to the list of providers of a GIIS. The GIIS
is nearly identical with the GRIS backend. However, it is configured to execute as content
provider a function that forwards (chains) the query of the provider to other published LDAP
server(s), which in most cases host a GRIS. GRIS and GIIS are identical with respect to query
processing and caching. Multi-level directories are constructed by having a GIIS publish itself
to another GIIS.

The publication process (mapped to the LDAP protocol’s add request) is referred to as
registration according to the Grid Registration Protocol (GRRP) protocol. The process of
querying a server according to the LDAP protocol is referred to as “inquiry” according to
the Grid Information Protocol (GRIP).

Figure 4.5 contrasts the different architectures of a GRIS and a hyper registry. A hyper

7A content provider is termed information providers in MDS parlance.

66 CHAPTER 4. A DATABASE FOR DISCOVERY OF DISTRIBUTED CONTENT

registry maintains content links and cached content in its database, whereas a GRIS maintains
cached content only. The control paths from client to content provider and from content
provider to the hyper registry are missing in the GRIS architecture, disabling cache freshness
steering. A GRIS content provider is always local to the GRIS and cannot publish to a remote
GRIS or GIIS. In contrast, a hyperlink content provider is cleanly decoupled from a hyper
registry and only requires the ubiquitous HTTP protocol for simple communication with a
local or remote hyper registry. A GRIS requires implementing the complex LDAP protocol,
including its query language, at every content provider location. In contrast, handling the
powerful but complex XQuery language is only required within a hyper registry, not at the
content provider. The entry barrier to participation in our system is low. For example, it may
be sufficient to run an off-the-shelf Apache server and cron job to publish content. Table 4.2
summarizes some commonalities and differences related to publication and content freshness.

Executable

Content Source

Content retrieval
(pull)
via execution of
local program

Content Provider

GRISCache
Query

Remote Client

Query

c) Hierarchy of Hyperlink Registries

... GIIS

... GRIS

... Registry

d) Hierarchy of GIIS and GRIS registries

Publisher

Presenter

Mediator

Content Source

(Re)publish content link
without content or

with content (push)
via HTTP POST

Content retrieval
(pull)
via HTTP GET

Content Provider

Registry

Remote Client

H
om

ogeneous
data m

odel
H

eterogeneous
data m

odel

Query

DB
Query

a) Content Provider and Hyperlink Registry b) Content Provider and GRIS

Figure 4.5: Hyper Registry and Grid Resource Information Service.

4.9. RELATED WORK 67

Question MDS Hyper Registry

Is the architecture
uniform?

No. There exist two concepts: GRIS and
GIIS.

Yes. One concept is expressive enough – the hyper
registry.

Can a provider pub-
lish to a remote reg-
istry?

No. A provider is local to a GRIS. Yes. A provider can publish to any hyper registry,
no matter whether the hyper registry is deployed
locally, remotely or in-process.

Can a provider ac-
tively steer registry
freshness?

No. A GRIS is actively pulling content.
It can be statically configured to cache
the pulled content for a fixed amount of
time (on a per provider basis). A content
provider is passive. It cannot actively pub-
lish and refresh content and hence cannot
steer the freshness of its content cached in
the GRIS.

Yes. Content provider and hyper registry are ac-
tive and passive at the same time. At any time,
a hyper registry can actively pull content, and a
content provider can actively push with or with-
out content. Both components can steer the fresh-
ness of content cached in the hyper registry.

Can a client retrieve
current content?

No. A client cannot retrieve the current
content from a content provider. It has
to go through a GRIS or GIIS, which nor-
mally return stale content from their cache.

Yes. A client can directly connect to a content
provider and retrieve the current content, thereby
avoiding stale content from a hyper registry.

Can a client query
steer result fresh-
ness?

No. A client query cannot steer the fresh-
ness of the results it generates.

Yes. A client query can steer the freshness of
the results it generates via the refresh-on-client-
demand strategy.

Can a child registry
publish content to a
parent registry and
steer its freshness?

No. The GIIS is actively pulling content.
A content provider and a GRIS are passive,
cannot publish content to a remote registry
(GIIS), and hence cannot actively steer the
freshness of their respective content cached
in a remote registry (GIIS).

No. A parent hyper registry is actively pulling
content from its child hyper registries. A child
hyper registry is passive, cannot publish content
to a parent hyper registry, and hence cannot ac-
tively steer the freshness of content cached in a
parent hyper registry. In this respect, MDS and
hyper registry are alike.

Can a parent reg-
istry cache content
from a child registry,
thereby trading con-
tent freshness for re-
sponse time?

Yes. A cache maintains results of prior
queries. If the namespace of a query is
contained in the namespace of the cache,
the query is answered from the cache.

Maybe. We speculate that a hyper registry may
use semantic caching [80] like the XCache sys-
tem [81] to maintain prior queries and their re-
sult sets. The parts of a query overlapping with
prior queries are answered from the cache. The
remainder is a rewritten query that is evaluated
like a normal (not cached) query.

Table 4.2: Comparison of Hyper Registry and Metacomputing Directory Service.

68 CHAPTER 4. A DATABASE FOR DISCOVERY OF DISTRIBUTED CONTENT

4.10 Summary

Comparison with Related Work. We address the problems of maintaining dynamic
and timely information populated from a large variety of unreliable, frequently changing,
autonomous and heterogeneous remote data sources. The hyper registry has a number of key
properties. An XML data model allows for structured and semi-structured data, which is
important for integration of heterogeneous content. The XQuery language allows for powerful
searching, which is critical for non-trivial applications. Database state maintenance is based
on soft state, which enables reliable, predictable and simple content integration from a large
number of autonomous distributed content providers. Content link, content cache and a
hybrid pull/push communication model allow for a wide range of dynamic content freshness
policies, which may be driven by all three system components: content provider, hyper
registry and client.

These key properties distinguish our approach from related work, which individually
addresses some, but not all of the above issues. Some work does not follow an XML data
model (X.500, LDAP, MDS, RDBMS, JINI). Sometimes the query language is not powerful
enough (UDDI, X.500, LDAP, MDS, JINI, SDS). Sometimes the database is not based on
soft state (RDBMS, UDDI, X.500, LDAP). Sometimes content freshness is not addressed
(RDBMS, UDDI, X.500, LDAP, JINI, SDS) or only partly addressed (MDS).

Summary. This chapter proposes a general-purpose XQuery database with mechanisms
for content caching and soft state maintenance, the so-called hyper registry. The hyperlink
hyper registry can be used to maintain hyperlinks and to cache content pointed to by these
links. A content provider can publish a hyperlink, which in turn enables the hyper registry
(and third parties) to pull (retrieve) the current content. Optionally, a content provider can
also include a copy of the current content as part of publication. Example content includes
service descriptions, XML documents or arbitrary binary content. A hyper registry may sup-
port caching, for example in server pull or client push mode or both. For reliable, predictable
and simple distributed state maintenance, hyper registry tuples are maintained as soft state.
A tuple may eventually be discarded unless refreshed by a stream of timely confirmation
notifications from the provider. To condition for overload, limit resource consumption and
satisfy minimum requirements on content freshness, mechanisms to throttle refresh and query
frequency are proposed, adaptively inviting more or less traffic over time. Content link, con-
tent cache, a hybrid pull/push communication model and the expressive power of XQuery
allow for a wide range of dynamic content freshness policies, which may be driven by all
three system components: content provider, hyper registry and client. The entry barrier to
participation in the system should be very low. To this end, the system is designed to be as
simple as possible at the edges of the network. A content provider is cleanly decoupled from
the hyper registry and only requires the ubiquitous HTTP protocol for communication with
a local or remote hyper registry.

Chapter 5

The Web Service Discovery Architecture

5.1 Introduction

Having defined all registry aspects in detail in the previous chapter, we can now proceed to
the definition of a web service layer that promotes interoperability for existing and future
Internet software. Such a layer views the Internet as a large set of services with an extensible
set of well-defined interfaces. A web service consists of a set of interfaces with associated
operations. Each operation may be bound to one or more network protocols and endpoints.
The definition of interfaces, operations and bindings to network protocols and endpoints is
given as a service description [8]. In contrast to popular belief, a web service is neither required
to carry XML [11] messages, nor to be bound to SOAP [9] or the HTTP [34] protocol, nor
to run within a .NET [82] hosting environment. A discovery architecture defines appropriate
services, interfaces, operations and protocol bindings for discovery. The key problem is:

• Can we define a discovery architecture that promotes interoperability, embraces industry
standards, and is open, modular, flexible, unified, non-intrusive and simple yet power-
ful?

We propose and specify such a discovery architecture, the so-called Web Service Discov-
ery Architecture (WSDA). WSDA subsumes an array of disparate concepts, interfaces and
protocols under a single semi-transparent umbrella. It specifies a small set of orthogonal
multi-purpose communication primitives (building blocks) for discovery. These primitives
cover service identification, service description retrieval, data publication as well as minimal
and powerful query support. The individual primitives can be combined and plugged together
by specific clients and services to yield a wide range of behaviors and emerging synergies. We
define four interfaces, namely Presenter, Consumer, MinQuery and XQuery. The Presenter
interface allows clients to retrieve the current service description. The Consumer interface al-
lows content providers to publish a tuple set to a consumer. The MinQuery interface provides
the simplest possible query support (“select all”-style); It returns tuples including or exclud-
ing cached content. The XQuery interfaces provides powerful XQuery support. Finally, we
compare in detail the properties of WSDA with the emerging Open Grid Service Architecture
[6, 17].

70 CHAPTER 5. THE WEB SERVICE DISCOVERY ARCHITECTURE

5.2 Interfaces

Presenter. The Presenter interface allows clients to retrieve the current service descrip-
tion. Clearly clients from anywhere must be able to retrieve the current description of a
service (subject to security policy). Hence, a service needs to present (make available) to
clients the means to retrieve the service description. To enable clients to query in a global
context, some identifier for the service is needed. Further, a description retrieval mechanism
is required to be associated with each such identifier. Together these are the bootstrap key
(or handle) to all capabilities of a service. In principle, identifier and retrieval mechanisms
could follow any reasonable convention.

In practice, however, a fundamental mechanism such as service discovery can only hope
to enjoy broad acceptance, adoption and subsequent ubiquity if integration of legacy services
is made easy. The introduction of service discovery as a new and additional auxiliary service
capability should require as little change as possible to the large base of valuable existing
legacy services, preferable no change at all. It should be possible to implement discovery-
related functionality without changing the core service. Further, to help easy implementation
the retrieval mechanism should have a very narrow interface and be as simple as possible.

In support of these requirements, the identifier is chosen to be a URL [65], and the retrieval
mechanism is chosen to be HTTP(S) [34]. We define that an HTTP(S) GET request to the
identifier must return the current service description (subject to local security policy). In
other words, a simple hyperlink is employed. In the remainder of this thesis, we will use
the term service link for such an HTTP URL identifier enabling service description retrieval.
Like in the WWW, service links (and content links, see below) can freely be chosen as long as
they conform to the HTTP URL specification [65]. Hence, they may contain the usual URL
encoded attribute-value pairs. The semantics of the structure of a given link are opaque to a
client. Examples for legal links are:

http://sched.cern.ch:8080/getServiceDescription.wsdl

https://cms.cern.ch/getServiceDescription?id=4712&cache=disable

http://phone.cern.ch/lookup?query="select phone from phonebook where phone=0450-1234"

http://repcat.cern.ch/getPhysicalFileNames?lfn="myLogicalFileName"

Because service descriptions should describe the essentials of the service, it is recom-
mended1 that the service link concept be an integral part of the description itself. As a
result, service descriptions may be retrievable via the Presenter interface, which defines an
operation getServiceDescription() for this purpose. The operation is identical to service
description retrieval and is hence bound to (invoked via) an HTTP(S) GET request to a
given service link. Additional protocol bindings may be defined as necessary.

Consumer. The Consumer interface allows content providers to publish a tuple set to a
consumer. A WSDA tuple follows the Dynamic Data Model (DDM) (see Section 3.3). It has
as attributes a content link, a type, a context, four soft state time stamps, and (optionally)

1In general, it is not mandatory for a service to implement any “standard” interface. Historical evidence
suggests that the acceptance of ubiquituous Internet infrastructures and their flexible and successful evolution
strongly depends on being conservative with the term MUST.

5.2. INTERFACES 71

two arbitrary-shaped extensibility elements, namely metadata and content. A content link
(e.g. service link) is an HTTP(S) URL that may point to the content of a content provider.
Given the link the current content can be retrieved (pulled) at any time via an HTTP(S)
GET request to the link. The type describes what kind of content is being published. The
context describes why the content is being published or how it should be used. The optional
metadata element may further describe the content and/or its retrieval beyond what can
be expressed with the previous attributes. For example it may describe retrieval from an
UDDI [10] registry, formulated in the Web Service Inspection Language (WSIL) [69], or it
may be a secure digital XML signature [68]. Given this tuple information, a content retriever
module can retrieve the current content from the provider. Based on embedded soft state
time stamps, a tuple may eventually be discarded unless refreshed by a stream of timely
confirmation notifications. Within a tuple set, a tuple is uniquely identified by its tuple key,
which is the pair (content link, context). Content and metadata can be structured or
semi-structured data in the form of any arbitrary well-formed XML document or fragment2.
An individual element may, but need not, have a schema (XML Schema [12]), in which case
it must be valid according to the schema. All elements may, but need not, share a common
schema. This flexibility is important for integration of heterogeneous content. To summarize,
a WSDA tuple is an annotated multi-purpose soft state data container that may contain a
piece of arbitrary content and allows for refresh of that content at any time, as depicted
in Figure 5.1. WSDA offers an open dynamic data model that allows for a wide range of
powerful caching policies. The publish operation has the signature (TS4, TS5) publish(XML
tupleset). For detailed motivation, justification and discussion of the Dynamic Data Model
and the semantics of soft state time stamps, see Chapters 3 and 4.

Content (optional)

Link Type Context Timestamps Metadata

HTTP GET(tuple.link) --> tuple.content
type(HTTP GET(tuple.link)) --> tuple.type

Tuple :=

Semantics :

Figure 5.1: Tuple Link allows for Refresh of Tuple Content at any time.

MinQuery. The MinQuery interface provides the simplest possible query support (“select
all”-style). It returns tuples including or excluding cached content. As a minimum, clients
can query by invoking minimalist query operations such as getTuples(). The getTuples()
query operation takes no arguments and returns the full set of all tuples “as is”. That
is, query output format and publication input format are the same. If supported, output
includes cached content. The getLinks() query operation is similar in that it also takes no

2For clarity of exposition, the content is an XML element. In the general case (allowing non-text based
content types such as image/jpeg), the content is a MIME [67] object. The XML based publication input
tuple set and query result tuple set is augmented with an additional MIME multipart object, which is a list
containing all content. The content element of a tuple is interpreted as an index into the MIME multipart
object.

72 CHAPTER 5. THE WEB SERVICE DISCOVERY ARCHITECTURE

arguments and returns the full set of all tuples. However, it always substitutes an empty
string for cached content. In other words, the content is omitted from tuples, potentially
saving substantial bandwidth. For an extensive discussion, see Chapter 4.

Advanced query support can be expressed on top of the minimal query capabilities. Such
higher-level capabilities conceptually do not belong to a consumer and minimal query inter-
face, which are only concerned with the fundamental capability of making a content link (e.g.
service link) reachable3 for clients. As an analogy, consider the related but distinct concepts
of web hyper-linking and web searching: Web hyper-linking is a fundamental capability with-
out which nothing else on the Web works. Many different kinds of web search engines using
a variety of search interfaces and strategies can and are layered on top of web linking. The
kind of XQuery support we propose below is certainly not the only possible and useful one.
It seems unreasonable to assume that a single global standard query mechanism can satisfy
all present and future needs of a wide range of communities. Multiple such mechanisms
should be able to coexist. Consequently, the consumer and query interfaces are deliberately
separated and kept as minimal as possible, and an additional interface type (XQuery) for
answering XQueries is introduced below.

XQuery. The XQuery interface provides powerful XQuery support, which is important
for realistic service and resource discovery use cases (see Section 3.5). For a detailed moti-
vation and justification, including a discussion of a wide range of discovery queries and an
evaluation of various query languages, see Chapter 3. XQuery [18, 50, 51, 52] is the stan-
dard XML query language developed under the auspices of the W3C. It allows for powerful
searching, which is critical for non-trivial applications. Everything that can be expressed
with SQL [19] can also be expressed with XQuery. However, XQuery is a more expres-
sive language than SQL. XQuery can dynamically integrate external data sources via the
document(URL) function. The document(URL) function can be used to process the XML
results of remote operations invoked over HTTP. For example, given a service description
with a getPhysicalFileNames(LogicalFileName) operation, a query can match on values
dynamically produced by that operation. The same rules that apply to minimalist queries
also apply to XQuery support. An implementation can use a modular and simple XQuery
processor such as Quip [70] for the operation XML query(XQuery query). Because not only
content, but also content link, context, type, time stamps, metadata etc. are part of a tuple,
a query can also select on this information.

Interface Summary. The four interfaces and their respective operations are summarized
in Table 5.1. Figure 5.2 depicts the interactions of a client with implementations of these
interfaces.

3Reachability is interpreted in the spirit of garbage collection systems: A content link is reachable for a
given client if there exists a direct or indirect retrieval path from the client to the content link.

5.2. INTERFACES 73

Interface Operations Responsibility

Presenter XML getServiceDescription() Allows clients to retrieve the current description of a
service and hence to bootstrap all capabilities of a ser-
vice. See Section 2.3.

Consumer (TS4,TS5) publish(XML tupleset) A content provider can publish a dynamic pointer called
a content link, which in turn enables the consumer (e.g.
hyper registry) to retrieve the current content. Option-
ally, a content provider can also include a copy of the
current content as part of publication. Each input tuple
has a content link, a type, a context, some time stamps,
and (optionally) metadata and content. See Section 4.2
and 2.4.

MinQuery XML getTuples()

XML getLinks()

Provides the simplest possible minimal query support
(“select all”-style). The getTuples query operation re-
turns the full set of all available tuples “as is”. The
getLinks query operation is identical, except that it
always substitutes an empty string for cached content.
See Section 4.4 and 2.4.

XQuery XML query(XQuery query) Provides powerful XQuery support. Executes an
XQuery over the available tuple set. Because not
only content, but also content link, context, type, time
stamps, metadata etc. are part of a tuple, a query can
also select on this information. See Section 4.4 and 3.5.

Table 5.1: WSDA Interfaces and their Respective Operations.

Presenter Consumer MinQuery XQuery

 Tuple 1 ... Tuple N

Content 1

Presenter N

Content N
...

Remote Client

HTTP GET or
getSrvDesc()

publish(...) getTuples()
getLinks()

query(...)

T1

...

Tn

Presenter 1

Invocation
Content Link

Interface

Legend

Figure 5.2: Interactions of Client with Implementations of WSDA Interfaces.

74 CHAPTER 5. THE WEB SERVICE DISCOVERY ARCHITECTURE

5.3 Network Protocol Bindings

The operations of the WSDA interfaces are bound to (carried over) a default transport
protocol. The XQuery interface is bound to the Peer Database Protocol (PDP) proposed in
Chapter 7. For all other operations and arguments we assume for simplicity HTTP(S) GET
and POST as transport, and XML based parameters. Additional protocol bindings may
be defined as necessary. An example service description of a registry implementing all four
WSDA interfaces, formulated in SWSDL, is depicted in Figure 5.3.

<service>

<interface type ="http://gridforum.org/interface/Presenter-1.0">

<operation>

<name>XML getServiceDescription()</name>

<bind:http verb="GET" URL="https://registry.cern.ch/getServiceDescription"/>

</operation>

</interface>

<interface type = "http://gridforum.org/interface/Consumer-1.0">

<operation>

<name> (Time TS4, Time TS5) publish(XML tupleset)</name>

<bind:http verb="POST" URL="https://registry.cern.ch/publish"/>

</operation>

</interface>

<interface type = "http://gridforum.org/interface/MinQuery-1.0">

<operation>

<name> XML getTuples()</name>

<bind:http verb="GET" URL="https://registry.cern.ch/getTuples"/>

</operation>

<operation>

<name> XML getLinks()</name>

<bind:http verb="GET" URL="https://registry.cern.ch/getLinks"/>

</operation>

</interface>

<interface type = "http://gridforum.org/interface/XQuery-1.0">

<operation>

<name> XML query(XQuery query)</name>

<bind:beep URL="beep://registry.cern.ch:9000"/>

</operation>

</interface>

</service>

Figure 5.3: SWSDL description of a registry service implementing all four WSDA interfaces.

5.4. SERVICES 75

5.4 Services

In Chapter 4 we defined two kinds of example registry services: The so-called hypermin
registry must (at least) support the three interfaces Presenter, Consumer and MinQuery
(excluding XQuery support). A hyper registry must (at least) support these interfaces plus
the XQuery interface. Put another way, any service that happens to support, among others,
the respective interfaces qualifies as a hypermin registry or hyper registry. As usual, the
interfaces may have endpoints that are hosted by a single container, or they may be spread
across multiple hosts or administrative domains.

It is by no means a requirement that only dedicated hyper registry services and hypermin
registry services may implement WSDA interfaces. Any arbitrary service may decide to
offer and implement none, some or all of these four interfaces. For example, a job scheduler
may decide to implement, among others, the MinQuery interface to indicate a simple means
to discover metadata tuples related to the current status of job queues and the supported
Quality of Service. The scheduler may not want to implement the Consumer interface because
its metadata tuples are strictly read-only. Further, it may not want to implement the XQuery
interface, because it is considered overkill for its purposes. Even though such a scheduler
service does not qualify as a hypermin or hyper registry, it clearly offers useful added value.
Other examples for services implementing a subset of WSDA interfaces are consumers such
as an instant news service or a cluster monitor. These services may decide to implement the
Consumer interface to invite external sources for data feeding, but they may not find it useful
to offer and implement any query interface.

In a more sophisticated scenario, the example job scheduler may decide to publish its local
tuple set also to an (already existing) remote helper hyper registry service (i.e. with XQuery
support). To indicate to clients how to get hold of the XQuery capability, the scheduler may
simply copy the XQuery interface description of the remote helper hyper registry service and
advertise it as its own interface by including it in its own service description. This kind of
virtualization is not a “trick”, but a feature with significant practical value, because it allows
for minimal implementation and maintenance effort on the part of the scheduler.

Alternatively, the scheduler may include in its local tuple set (obtainable via the getLinks()
operation) a tuple that refers to the service description of the remote helper hyper registry
service. An interface referral value for the context attribute of the tuple is used, as follows:

<tuple link="https://registry.cern.ch/getServiceDescription"

type="service" ctx="x-ireferral://gridforum.org/interface/XQuery-1.0"

TS1="30" TC="0" TS2="40" TS3="50">

</tuple>

5.5 Properties

WSDA has a number of key properties:

• Standards Integration. WSDA embraces and integrates solid and broadly accepted
industry standards such as XML [11], XML Schema [12], the Simple Object Access
Protocol (SOAP) [9], the Web Service Description Language (WSDL) [8] and XQuery

76 CHAPTER 5. THE WEB SERVICE DISCOVERY ARCHITECTURE

[18]. It allows for integration of emerging standards such as the Web Service Inspection
Language (WSIL) [69].

• Interoperability. WSDA promotes an interoperable web service layer on top of ex-
isting and future Internet software, because it defines appropriate services, interfaces,
operations and protocol bindings. WSDA does not introduce new Internet standards.
Rather, it judiciously combines existing interoperability-proven open Internet standards
such as HTTP(S) [34], URI [65], MIME [67], XML [11], XML Schema [12] and BEEP
[35, 36, 31].

• Modularity. WSDA is modular because it defines a small set of orthogonal multi-
purpose communication primitives (building blocks) for discovery. These primitives
cover service identification, service description retrieval, publication, as well as minimal
and powerful query support. The responsibility, definition and evolution of any given
primitive is distinct and independent of that of all other primitives.

• Ease-of-use and Ease-of-implementation. Each communication primitive is de-
liberately designed to avoid any unnecessary complexity. The design principle is to
“make simple and common things easy, and powerful things possible”. In other words,
solutions are rejected that provision for powerful capabilities yet imply that even sim-
ple problems are complicated to solve. For example, service description retrieval is by
default based on a simple HTTP(S) GET. Yet, we do not exclude, and indeed allow for,
alternative identification and retrieval mechanisms such as the ones offered by UDDI
(Universal Description, Discovery and Integration) [10], RDBMS or custom Java RMI
registries (e.g. via tuple metadata specified in WSIL [69]). Further, tuple content is by
default given in XML, but advanced usage of arbitrary MIME [67] content (e.g. binary
images, files, MS-Word documents) is also possible. As another example, the minimal
query interface requires virtually no implementation effort on the part of a client or
server. Yet, where necessary, also powerful XQuery support may, but need not, be
implemented and used.

• Openness and Flexibility. WSDA is open and flexible because each primitive can be
used, implemented, customized and extended in many ways. For example, the interfaces
of a service may have endpoints spread across multiple hosts or administrative domains.
However, there is nothing that prevents all interfaces to be co-located on the same host
or implemented by a single program. Indeed, this is often a natural deployment scenario.
Further, even though default network protocol bindings are given, additional bindings
may be defined as necessary. For example, an implementation of the Consumer interface
may bind to (carry traffic over) HTTP(S) [34], SOAP/BEEP [31], FTP [32], or RMI
[83]. The tuple set returned by a query may be maintained according to a wide variety
of cache coherency policies, resulting in static to highly dynamic behavior. A consumer
may take any arbitrary custom action upon publication of a tuple. For example, it
may interpret a tuple from a specific schema as a command or an active message [84],
triggering tuple transformation and/or forwarding to other consumers such as loggers.
For flexibility, a service maintaining a WSDA tuple set may be deployed in any arbitrary

5.5. PROPERTIES 77

way. For example, the database can be kept in a XML file, in the same format as
returned by the getTuples query operation. However, tuples can also be kept in a
remote relational database.

• Expressive Power. WSDA is powerful because its individual primitives can be
combined and plugged together by specific clients and services to yield a wide range of
behaviors. Each single primitive is of limited value all by itself. The true value of simple
orthogonal multi-purpose communication primitives lies in their potential to generate
powerful emerging synergies. For example, combination of WSDA primitives enables
building services for data management, workflow management, auditing, instrumenta-
tion, monitoring and problem determination.

As another example, the consumer and query interfaces can be combined to implement
a Peer-to-Peer (P2P) database network for service discovery. In a large distributed
system spanning many administrative domains such as a DataGrid, it is desirable to
maintain and query dynamic and timely information about active participants such as
services, resources and user communities. However, in such a database system, the set
of information tuples in the universe is partitioned over one or more distributed nodes,
for reasons including autonomy, scalability, availability, performance and security. Here,
P2P nodes maintain a local database and implement the consumer and query interfaces.
Clients and P2P nodes publish (their) service descriptions and/or other metadata to
one or more P2P nodes. Publication enables distributed node topology construction
(e.g. ring, tree or graph) and at the same time constructs the database to be searched.
When any client wishes to search the P2P network with some query (see, for example
Section 3.5), it sends the query to a single node. The node applies the query to its
local database and returns matching results; it also forwards the query to its neighbor
nodes. These neighbors return their local query results; they also forward the query
to their neighbors, and so on. For an extensive discussion, see Chapter 6 and Chapter
7, where a P2P database framework and corresponding network protocol are devised,
which are unified in the sense that they allow to express specific applications for a wide
range of data types, node topologies, query languages, query response modes, neighbor
selection policies, pipelining characteristics, timeout and other scope options.

• Uniformity. WSDA is unified because it subsumes an array of disparate concepts,
interfaces and protocols under a single semi-transparent umbrella. It allows for multi-
ple competing distributed systems concepts and implementations to coexist and to be
integrated. Clients can dynamically adapt their behavior based on rich service intro-
spection capabilities. Clearly there exists no solution that is optimal in the presence
of the heterogeneity found in real-world large cross-organizational distributed systems
such as Data Grids, electronic market places and instant Internet news and messaging
services. Introspection and adaption capabilities increasingly make it unnecessary to
mandate a single global solution to a given problem, thereby enabling integration of
collaborative systems.

• Non-Intrusiveness. WSDA is non-intrusive because it offers interfaces but does
not mandate that every service in the universe must comply to a set of “standard”

78 CHAPTER 5. THE WEB SERVICE DISCOVERY ARCHITECTURE

interfaces.

5.6 Comparison with Open Grid Services Architecture

We have recently learned about the emerging Open Grid Services Architecture (OGSA) [6, 17].
OGSA exhibits striking similarities with the Web Service Discovery Architecture (WSDA)
proposed above, in spirit and partly also in design. We stress that this thesis and OGSA
have so far been mutually independent work in their entirety. Future work is likely to be
collaborative and convergent due to shared interest. Due to the recent circulation of early
OGSA material, our understanding of it is limited and not necessarily accurate. Nevertheless,
in this section we attempt a preliminary comparison of OGSA concepts with WSDA concepts.

OGSA is work-in-progress, but an important first step towards enabling powerful, flexible
yet also interoperable large cross-organizational Grid systems. Like WSDA, OGSA defines
and standardizes a set of (mostly) orthogonal multi-purpose communication primitives that
can be combined and customized by specific clients and services to yield powerful behavior.
Like WSDA, OGSA embraces solid and broadly accepted industry standards such as XML
[11], XML Schema [12], the Simple Object Access Protocol (SOAP) [9], the Web Service
Description Language (WSDL) [8] and XQuery [18].

Service Link, Service Description and Presenter. In OGSA, a service instance is
identified by a Grid Service Handle (GSH), which is an immutable, globally unique HTTP(S)
URL that distinguishes a specific service instance from all other service instances that have
existed, exist now, or will exist in the future. By means of an HTTP GET or the HandleMap
interface, the handle can be resolved to a Grid Service Reference (GSR), which is typically
a WSDL document containing descriptions of all supported service interfaces. A reference
may change over time. That is, the contents of the WSDL document may change over time.
A reference is based on soft state, hence expires unless periodically renewed.

A GSH corresponds to a WSDA service link. However, unlike a GSH, a service link
is neither required to be immutable nor globally unique. A GSR corresponds to a WSDA
service description given in WSDL. Both are soft state documents. Although it is unclear
from the complex presentation, it appears that a HandleMap corresponds to the WSDA
Presenter interface. In WSDA, the operation Presenter.getServiceDescription() or a
simple HTTP(S) GET to a content link (e.g. service link) may be used to retrieve the cur-
rent content (e.g. service description). WSDA allows arbitrary-shaped content retrieval via
MIME encoding (e.g. textual, binary), including mapping a service link to a service descrip-
tion. It appears that OGSA is restricted to mapping a GSH to a GSR. Further not every legal
HTTP(S) URL is a legal GSH. In WSDA, every legal HTTP(S) URL is a legal content link
and hence also a legal service link. OGSA defines implicit and unclear URL suffix mapping
and GSHomeHandleMapID semantics that we believe would better be omitted or expressed as
part of the HandleMap interface. The OGSA HandleMap operation GSR FindByHandle(GSH)
corresponds to the WSDA Presenter operation XML getServiceDescription(). The addi-
tional GSH argument is unnecessary in our approach.

5.6. COMPARISON WITH OPEN GRID SERVICES ARCHITECTURE 79

Tuple, Tuple Set and Query. In OGSA, a grid service instance maintains so-called ser-
vice data XML elements. A service data element is a multi-purpose soft state data container
that may contain arbitrary content. A service data element has a name attribute and three
soft state time stamp attributes (goodFrom, goodUntil, notGoodAfter) and may contain an
arbitrary extensibility element as content. In contrast, a WSDA tuple follows the Dynamic
Data Model (DDM). It has as attributes a content link, a type, a context, four soft state time
stamps, and (optionally) two arbitrary-shaped extensibility elements, namely metadata and
content. A WSDA tuple is an annotated multi-purpose soft state data container that may
contain a piece of arbitrary content and allows for refresh of that content at any time (see
Figure 5.1). A collection of OGSA service data elements corresponds to a WSDA tuple set.
In WSDA, publication input data and query output is uniformly expressed as a tuple set4.

The OGSA operation FindServiceData of the GridService interface allows querying
the collection of service data elements (roughly corresponding to the WSDA MinQuery and
XQuery interfaces). It attempts to support multiple query languages by accepting and re-
turning an arbitrary XML element. The schema of the input XML element indicates the
query language. If the service instance supports the desired query language, the query is
executed against the collection of service data elements. Every OGSA grid service must sup-
port a simple query “language” that returns a list of all service data elements whose name
equals a given name (exact match). The name “root” is reserved and must return at least a
list of “standard” service data elements such as handle, reference, primary key, a list of the
supported query languages, etc.

The OGSA FindServiceData operation takes arbitrary XML input and returns arbitrary
XML output. It remains to be seen how useful it is to coerce distinct query capabilities into
a single generic operation. Consider that modern software systems rarely coerce distinct
capabilities into a single generic handler function of the form Object do(Object). Further
consider that the very purpose of separate interface types and names is to allow for indepen-
dence, separate evolution, flexibility, clarity, predictability, type safety and straightforward
introspection. In essence, this is what web services and service descriptions are about. In
this light, generic functions for distinct capabilities appear counter-intuitive to the spirit of
web services.

For comparison, in WSDA, trivial and powerful query support are cleanly separated. The
MinQuery interface is indeed minimal and requires only the simplest possible query support
(“select all”-style) via the operations getTuples() and getLinks(). The WSDA XQuery
interface, on the other hand, allows extremely powerful queries. Finally, it is unclear from
the material whether OGSA intends in the future to support either or both XQuery, XPath,
or none.

Data Publication. An OGSA registry service instance maintains a collection of han-
dles. Typically, an OGSA registry service offers a Registry interface, which supports reg-
istering and unregistering handles. The registerService operation takes as input a han-
dle, a timeout, and optionally, an abstract and an arbitrary extensibility element. The

4The output tuple set of a constructive query may contain arbitrary content, whereas all other queries
output a tuple set with tuples from the dynamic data model (see Section 3.3).

80 CHAPTER 5. THE WEB SERVICE DISCOVERY ARCHITECTURE

unregisterService operation takes as input the handle to be removed.
In contrast, a WSDA consumer and query can accept and return arbitrary textual and bi-

nary soft state data in the form of a tuple set, including content links, service links (handles),
cached content and metadata (e.g. a WSIL [69] fragment). The OGSA registerService op-
eration roughly corresponds to the WSDA publish operation. However, the latter operation
is a unified multi-purpose operation, supporting a set of arbitrary-shaped soft state tuples.
The functionality to publish information other than handles (e.g. references) to a registry or
service currently appears to be missing from OGSA. The OGSA notification interface appears
only useful for interaction patterns based on subscription by notification sinks. Invitation for
subscription appears to be missing. The unregisterService operation is not necessary in
WSDA, because a tuple is based on soft state. Explicit (immediate) unregistration can be
achieved by using the WSDA publish operation with tuples carrying zero-valued soft state
time stamps.

An OGSA registry service supports discovery queries via the FindServiceData operation
of the GridService interface. The relationship between discovery queries and the maintained
collection of handles is unclear. More precisely, it is unclear whether handles are maintained
as service data elements, and if they can be queried in the same way as described above.

The OGSA NotificationSource and NotificationSink interfaces allow for publish-
subscribe functionality based on message type and interest statements. A notification source
may offer a set of topics, which notification sinks may use for subscription. A notification
source may send notification messages to a subscribed notification sink. Subscription requests
are soft state based and expire unless periodically renewed. The OGSA NotificationSink
interface corresponds to the WSDA Consumer interface. However, it appears that it is not
foressen that an OGSA notification message may carry a set of more than one service data
elements5. In contrast, a WSDA consumer message explicitly carries zero or more tuples in
a tuple set, resulting in potentially much improved efficiency. Consider that all production
quality database management systems we are aware of support batching of tuples over the
network. This is because inserting a million tuples (e.g. CPU load samples) into a database
should not involve the same number of network round-trips. In addition to efficiency by
design, WSDA offers an open and precisely specified dynamic data model that allows for a
wide range of powerful caching policies. We are working on a multi-purpose interface for
persistent XQueries (i.e. server-side trigger queries), which will roughly correspond to the
OGSA NotificationSource interface, albeit in a more general and powerful manner.

Grid Service. In OGSA, a GridService interface supports discovery queries (findServiceData),
setting and prolonging of shutdown time (setTerminationTime) as well as explicit (imme-
diate) shutdown of the service (destroy). OGSA mandates that every grid service must
implement the GridService interface. In contrast, WSDA does not require a service to im-
plement any “standard” interface. A specific service (e.g. the hyper registry service) may,
of course, mandate implementation of certain interfaces, but there is no global requirement
that any and all services in the universe must satisfy. Historical evidence suggests that the

5Nesting service data elements inside a service data element is possible but undefined and left without
semantics.

5.7. SUMMARY 81

acceptance of ubiquituous Internet infrastructures and their flexible and successful evolution
strongly depends on being conservative with the term MUST. A design rarely turns out right
the first time. Typically, several design revisions and refactorings over time are needed. Con-
sider that once a fundamental interface is introduced as mandatory, one is “stuck” with it
forever, at least if compatibility and stability are of concern.

The problem is subtle and comparable to the design of the base class of single-rooted
object oriented programming languages. A uniform and well designed base class clearly
offers strong advantages because everyone can safely assume certain essential features to
be available everywhere. Many C++ reusability problems stem from the fact that the C++
language has no single common base class. For example, integration of third-party frameworks
is problematic at best. On the other hand, a controversial or flawed base class feature such
as the (potentially very useful) clone() method of the Java base class is bound to lead to
dissatisfaction.

Another comparable problem-in-the-large is the definition of the Java platform. Typi-
cally, Java interfaces and frameworks are not designed, specified, revised, standardized and
hardened within the Java platform. Rather, they are born and live externally for some two
years to allow enough time for a community process, deployment feedback from reference
implementations, and for separation of wheat from chaff. Only then may some of them be
considered to be merged into the core Java platform definition.

It is often desirable to include features only if considered non-intrusive and absolutely
essential for a wide range of communities. While certainly interesting and often useful,
justification is missing why query, shutdown and other lifetime maintenance of services should
be absolutely essential for every service. Further, while certainly well designed, justification is
missing why the chosen definition of these features is superior to other approaches. Consider
that a large variety of server administration and monitoring products with related but not
equivalent interfaces has been introduced and marketed in the past [85]. In addition, the
OGSA query interface certainly is, just like our query interfaces, not the only possible and
useful one. Finally, we believe that a main idea behind web services is service description
introspection and dynamic adaption. This capability increasingly makes it unnecessary to
mandate a global “service base class or interface”.

Other. The OGSA Factory interface supports dynamically creating short or long-lived
remote service instances. An OGSA service instance may be associated with a primary key,
which may be used to locate and shut down service instances created by a factory. It is
unclear what the added value of a primary key over a handle is. The concept may perhaps
be related to the WSDA tuple key, which is the pair (content link, context). A tuple
key uniquely identifies a tuple within a tuple set.

Table 5.2 summarizes the comparison of corresponding OGSA and WSDA concepts.

5.7 Summary

We propose and specify an open discovery architecture, the so-called Web Service Discovery
Architecture (WSDA). WSDA views the Internet as a large set of services with an extensible

82 CHAPTER 5. THE WEB SERVICE DISCOVERY ARCHITECTURE

Concept OGSA WSDA

Interfaces GridService, NotificationSource, Notifica-
tionSink, Registry, Factory, PrimaryKey,
HandleMap

Presenter, Consumer, MinQuery, XQuery

Interfaces required
to be implemented
by every service

GridService interface; defines operations for
query and life cycle maintaince

None

Service identifier Grid Service Handle (GSH) Service link (i.e. content link)

Service description Grid Service Reference (GSR) (e.g. WSDL) Service description (e.g. WSDL)

Service description
retrieval

via HTTP(S) GET or
HandleMap.findByHandle(GSH)

via HTTP(S) GET or
Presenter.getServiceDescription()

Multi-purpose data
container

Service data Tuple

Set of data con-
tainers

Service data list Tuple set

Query capability GridService.FindServiceData(XML

query)

MinQuery.getLinks(),
MinQuery.getTuples(),
XQuery.query(XQuery)

Data publication Registry.RegisterService(handle),
NotificationSink.deliverNotification

(servicedata)

Consumer.publish(XML tupleset)

Table 5.2: Open Grid Service Architecture vs. Web Service Discovery Architecture.

set of well-defined interfaces. WSDA has a number of key properties. It promotes an inter-
operable web service layer on top of existing and future Internet software, because it defines
appropriate services, interfaces, operations and protocol bindings. It embraces and integrates
solid and broadly accepted industry standards such as XML, XML Schema, the Simple Ob-
ject Access Protocol (SOAP), the Web Service Description Language (WSDL) and XQuery.
It allows for integration of emerging standards such as the Web Service Inspection Language
(WSIL). It is modular because it defines a small set of orthogonal multi-purpose communica-
tion primitives (building blocks) for discovery. These primitives cover service identification,
service description retrieval, data publication as well as minimal and powerful query support.
Each communication primitive is deliberately designed to avoid any unnecessary complexity.
WSDA is open and flexible because each primitive can be used, implemented, customized and
extended in many ways. It is powerful because the individual primitives can be combined
and plugged together by specific clients and services to yield a wide range of behaviors and
emerging synergies. It is unified because it subsumes an array of disparate concepts, inter-
faces and protocols under a single semi-transparent umbrella. It is non-intrusive because it
offers interfaces but does not mandate that every service in the universe must comply to a
set of “standard” interfaces. Finally, we compare in detail the properties of WSDA with the
emerging Open Grid Service Architecture.

Tim Berners-Lee designed the World Wide Web as a consistent interface to a flexible and
changing heterogeneous information space for use by CERN’s staff, the High Energy Physics
community, and, of course, the world at large. The WWW architecture [86] rests on four
simple and orthogonal pillars: URIs as identifiers, HTTP for retrieval of content pointed

5.7. SUMMARY 83

to by identifiers, MIME for flexible content encoding, and HTML as the primus-inter-pares
(MIME) content type. Based on our Dynamic Data Model (DDM), we hope to proceed further
towards a self-describing meta content type that retains and wraps all four WWW pillars
“as is”, yet allows for flexible extensions in terms of identification, retrieval and caching of
content. Judicious combination of the four WWW pillars, DDM, WSDA, the Hyper Registry,
the Unified Peer-to-Peer Database Framework (UPDF) and its associated Peer Database
Protocol (PDP) are used to define how to bootstrap, query and publish to a dynamic and
heterogeneous information space maintained by self-describing network interfaces.

84 CHAPTER 5. THE WEB SERVICE DISCOVERY ARCHITECTURE

Chapter 6

A Unified Peer-to-Peer Database Framework

In a distributed system, it is desirable to maintain and query dynamic and timely informa-
tion about active participants such as services, resources and user communities. As in a data
integration system, the goal is to exploit several independent information sources as if they
were a single source. However, in a large distributed database system spanning many ad-
ministrative domains, the set of information tuples in the universe is partitioned over one or
more distributed nodes, for reasons including autonomy, scalability, availability, performance
and security. It is not obvious how to enable powerful discovery query support and collective
collaborative functionality that operate on the distributed system as a whole, rather than on
a given part of it. Further, it is not obvious how to allow for search results that are fresh,
allowing dynamic content. It appears that a Peer-to-Peer (P2P) database network may be
well suited to support dynamic distributed database search, for example for service discovery.

The overall P2P idea is as follows. Rather than have a centralized database, a distributed
framework is used where there exist one or more autonomous database nodes, each main-
taining its own data. Queries are no longer posed to a central database; instead, they are
recursively propagated over the network to some or all database nodes, and results are col-
lected and send back to the client. The key problems then are:

• What are the detailed architecture and design options for P2P database searching in
the context of service discovery? What response models can be used to return matching
query results? How should a P2P query processor be organized? What query types can
be answered (efficiently) by a P2P network? What query types have the potential to
immediately start piping in (early) results? How can a maximum of results be delivered
reliably within the time frame desired by a user, even if a query type does not support
pipelining? How can loops be detected reliably using timeouts? How can a query scope be
used to exploit topology characteristics in answering a query? For improved efficiency,
how can queries be executed in containers that concentrate distributed P2P database
nodes into hosting environments with virtual nodes?

• Can we devise a unified P2P database framework for general-purpose query support in
large heterogeneous distributed systems spanning many administrative domains? More
precisely, can we devise a framework that is unified in the sense that it allows to express
specific applications for a wide range of data types, node topologies, query languages,
query response modes, neighbor selection policies, pipelining characteristics, timeout
and other scope options?

86 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

In this chapter, we take the first steps towards unifying the fields of database management
systems and P2P computing, which so far have received considerable, but separate, attention.
We extend database concepts and practice to cover P2P search. Similarly, we extend P2P
concepts and practice to support powerful general-purpose query languages such as XQuery
[18] and SQL [19]. As a result, we answer the above questions by proposing the so-called
Unified Peer-to-Peer Database Framework (UPDF).

The related but orthogonal concepts of (logical) link topology and (physical) node deploy-
ment model are introduced. Definitions are proposed, clarifying the notion of node, service,
fat, thin and ultra-thin P2P networks, as well as the commonality of a P2P network and a
P2P network for service discovery. The agent P2P model is proposed and compared with the
servent P2P model. A timeout-based mechanism to reliably detect and prevent query loops
is proposed. Four techniques to return matching query results to an originator are charac-
terized, namely Routed Response, Direct Response, Routed Metadata Response, and Direct
Metadata Response. Query processing in centralized, distributed and P2P databases is uni-
fied. A theory of query processing for queries that are (or are not) recursively partitionable
is proposed, which directly reflects the basis of the P2P scalability potential. The definition
and properties of simple, medium and complex queries are clarified with respect to recursive
partitioning. It is established to what extent simple, medium and complex queries support
pipelining. To ensure that a maximum of results can be delivered reliably within the time
frame desired by a user even if a query does not support pipelining, dynamic abort timeouts
using as policy exponential decay with halving are proposed. The result is established that
a loop timeout must be static. The concept of query scope is used to navigate and prune
the link topology and filter on attributes of the deployment model. Indirect specification of
scope based on neighbor selection, timeout and radius is detailed. For improved efficiency,
the concept of containers for centralized virtual node hosting is established. Three alternative
query execution strategies are proposed, namely normal query execution, collecting traversal
and quick scope violating query. The most efficient strategy relaxes the conditions imposed
by the query scope, whereas the others preserve the semantics of query and query scope.

6.1 Introduction

Gnutella. We now repeat Pandurangan’s summary of the Gnutella network as introduction
[87]: Gnutella is a public P2P network on the Internet, by which anyone can share, search
for and retrieve files and content. A participant first downloads one of the available (free)
implementations of the search servent. The participant may choose to make some documents
(say, all his FOCS papers) available for public sharing, and indexes the content of these
documents and runs a search server on the index. His servent joins the network by connecting
to a small number (typically 3-5) of neighbors currently connected to the network. When any
servent s wishes to search the network with some query q, it sends q to its neighbors. These
neighbors return any of their own documents that match the query; they also forward q to
their neighbors, and so on. To control network traffic this fanning-out typically continues to
some fixed radius (in Gnutella, typically 7); matching results are fanned back into s along
the paths on which q flowed outwards. Thus, every servent can initiate, forward and serve

6.1. INTRODUCTION 87

query results; clearly it is important that the content being searched for be within the search
radius of s. A servent typically stays connected for some time, and then drops out of the
network – many participating hosts are personal computers on dialup connections.

Topology. A servent can be seen as a node in a network. A link topology describes the
link structure among nodes. It describes which nodes are linked with which other nodes.
The simplest topology model is a star. All nodes are connected to a single central node.
Several link topology models covering the spectrum from centralized models to fine-grained
fully distributed models can be envisaged, among them single node, star, ring, tree, semi
hierarchical as well as graph models. Real-world distributed systems often have a more
complex organization than any simple topology. They often combine several topologies into
a hybrid topology. Nodes typically play multiple roles in such a system. For example, a
node might have a centralized interaction with one part of the system, while being part of a
hierarchy in another part [41]. Figure 6.1 depicts some example topologies.

Figure 6.1: Example Link Topologies [41].

Clearly not all nodes in a topology are equal. For example, node bandwidth may vary by
four orders of magnitude (50Kbps-1000Mbps), latency by six orders of magnitude (10us-10s),
and availability by four orders of magnitude (1%-99.99%).

We stress that it is by no means justifiable to advocate the use of graph topologies irre-
spective of application context and requirements. Depending on the context, all topologies
have their merits and drawbacks in terms of scalability, reliability, availability, content coher-
ence, fault tolerance, security and maintainability. However, from the structural perspective,
the graph topology is the most general one, being able to express all other conceivable topolo-
gies. Since our goal is to support queries that are generally independent of the underlying
topology, this thesis discusses problems arising in graph topologies. A problem solution that
applies to a graph also applies to any other topology1. The results of this thesis help enable

1Of course, a simpler or more efficient solution may exist for any particular topology.

88 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

the use of graph topologies where appropriate, they do not require or mandate the use of
them.

A link topology is purely a logical construct, as it does not describe where and how the
link information is stored and accessed. This is defined by a node deployment model, which
defines where and how one or more partitions of the graph are running, stored and accessed.
Consider the analogy to the WWW: The hyperlink topology remains identical, no matter
whether all pages of the universe are served by a single large dynamic web server or any kind
of worldwide federation of static web servers. A detailed discussion is given in Section 6.9.

Definitions - Service and Node. Let us clarify the notion of node and service. A service
exposes some functionality in the form of service interfaces to remote clients. Example services
are an echo service, a job scheduler, a replica catalog, a time service, a gene sequencing service
and a language translation service. A node is a service that exposes at least functionality
(i.e. service interfaces) for publication and P2P queries. Examples are a hyper registry as
introduced in the previous chapter, a Gnutella file sharing node and an extended job scheduler.
Put another way, any service that happens to support publication and P2P query interfaces
is a node. This implies that every node is a service. It does not imply that every service is
a node. Only nodes are part of the P2P topology, while services are not, because they do
not support the required interfaces. Usually, most services are not nodes. However, in some
networks most or all services are nodes.

• Most services are not nodes. We propose to speak of a fat P2P network. Typically,
only one or a few large and powerful services are nodes, enabling publication and P2P
queries. An example is a backbone network of 10 large registry nodes that ties together
10 administrative domains, each hosting a registry node to which local domain services
can publish to be discovered, as depicted in Figure 6.2 (left). The services (shown small
on the edges) are not part of the network. This is the more conventional scenario.
Existing legacy services need not be changed at all.

• Most or all services are nodes. We propose to speak of a thin or ultra-thin P2P
network. An example is a network of millions of small services, each having some pro-
prietary core functionality (e.g. replica management optimization, gene sequencing,
multi-lingual translation), actively using the network for searching (e.g. to discover
replica catalogs, remote gene mappers or language dictionary services), but also ac-
tively contributing to its search capabilities, as depicted in Figure 6.2 (right). This
scenario may appear to be intrusive, as it suggests that legacy services have to be
rewritten. However, this is not the case. Thanks to the concept of service descriptions
and service interfaces (a service may consist of a set of independent and distributed ser-
vice interfaces), additional external publication and search functionality can be added
to existing legacy services without touching their code base (see Section 2.2).

There is no difference between these scenarios in terms of technology. Discussion in this
chapter is applicable to ultra-thin, thin and fat P2P networks. For simplicity of exposition,
examples illustrate ultra-thin networks (every service is a node).

6.2. AGENT P2P MODEL AND SERVENT P2P MODEL 89

Figure 6.2: Fat (left) and Ultra-thin (right) Peer-to-Peer network.

Definitions - P2P network vs. P2P network for service discovery. In any kind of
P2P network, nodes may publish themselves to other nodes, thereby forming a topology. In
a P2P network for service discovery, services and other content providers may publish their
service link and content links to nodes. Because nodes are services, also nodes may publish
their service link (and content links) to other nodes, thereby forming a topology. In any kind
of P2P network, a node has a database or some kind of data source against which queries are
applied. In a P2P network for service discovery, this database happens to be the publication
database. In other words, publication enables topology construction and at the same time
constructs the database to be searched. Discussion in this chapter is applicable to any kind
of P2P network, while the examples illustrate service discovery.

6.2 Agent P2P Model and Servent P2P Model

Agent P2P Model. Queries in what we propose as the agent P2P model flow as follows.
When any originator wishes to search the P2P network with some query, it sends the query
to a single node. We call this entry point the agent node of the originator2. The agent applies
the query to its local database and returns matching results; it also forwards the query to
its neighbor nodes. These neighbors return their local query results; they also forward the
query to their neighbors, and so on.

For flexibilty, the protocol between originator and agent is left unspecified. The agent
P2P model is a hybrid of centralization and decentralization. It allows fully decentralized
infrastructures, yet also allows seamless integration of centralized client-server computing into
an otherwise decentralized infrastructure. An originator may embed its agent in the same
process (decentralized). However, the originator may just as well choose a remote node as
agent (centralized), for reasons including central control, reliability, continuous availability,
maintainability, security, accounting and firewall restrictions on incoming connections for
originator hosts. For example, a simple HTML GUI may be sufficient to originate queries
that are sent to an organization’s agent node. Note that only nodes are part of the P2P
topology, while the originator is not, because it does not possess the functionality of a node.
The agent P2P model provides location and distribution transparency to originators. An

2We stress that in our context, the term agent has nothing to do with intelligence, will-of-its-own, or mobile
code. The term is not only well established in classic networking, but is also used in the distributed artificial
intelligence community. We use the term in the sense of a service gateway.

90 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

originator is unaware that (and how) database tuples are partitioned among nodes. It only
communicates with an agent black box. (“People want something that’s logically centralized
and physically distributed. But they don’t want the weird errors that come with distribution”
- Mark Stuart Day, Cisco Systems).

Servent P2P Model. In contrast, in the servent P2P model (e.g. Gnutella) there
exists no agent concept, but only the concept of a servent. Put another way, the agent is
always embedded into the originator process, forming a monolithic servent. This model is
decentralized, and it does not allow for some degree of centralization. This restriction appears
unjustified. More importantly, it seriously limits the applicability of P2P computing. For
example, the Gnutella servent model could not cope with the large connectivity spectrum of
the user community, ranging from very low to very high bandwidth. As the Gnutella network
grew, it became fragmented because nodes with low bandwidth connections could not keep
up with traffic. The idea of requiring all functionality to exist at the very edge of the network
had to be reconsidered. Eventually, the situation was patched by rendering dumb the low
bandwidth servents on the (slow) edges of the network. The notion of centralized reflectors
(Gnutella) and super-peers (Morpheus) was (re) invented. A reflector is a powerful high
bandwidth gateway for many remote originators with low bandwidth dialup connections. It
volunteers to take over the functionality and shield traffic that would normally be carried
via low bandwidth servents. However, servents still keep data locally. The agent P2P model
naturally covers centralized and decentralized hybrids. Here a powerful node may act as agent
for many remote originators. In the remainder of this thesis, we follow the agent P2P model
and do not use the term servent anymore. The terms originator, node and agent (node) are
used instead.

6.3 Loop Detection

Query shipping is used to route queries through the nodes of the topology. A query remains
identical during forwards over hops (unless rewritten or split by a query optimizer). The very
same query may arrive at a node multiple times, along distinct routes, perhaps in a complex
pattern. Loops in query routes must be detected and prevented. Otherwise, unnecessary or
endless multiplication of workloads would be caused. Figure 6.2 depicts topologies with the
potential for a query to become trapped in infinite loops.

To enable loop detection, an originator attaches a different transaction identifier to each
query, which is a universally unique identifier (UUID). The transaction identifier always
remains identical during query forwarding over hops. A node maintains a state table of
recent transaction identifiers and returns an error whenever a query is received that has
already been seen. For example, this approach is used in Gnutella.

In practice, it is sufficient for the UUID to be unique with exceedingly large probability,
suggesting the use of a 128 bit integer computed by a cryptographic hash digest function
such as MD5 [88] or SHA-1 [89] over message text, originator IP address, current time and a
random number.

6.4. ROUTED VS. DIRECT RESPONSE, METADATA RESPONSES 91

6.4 Routed vs. Direct Response, Metadata Responses

We propose to distinguish four techniques to return matching query results to an origina-
tor: Routed Response, Direct Response, Routed Metadata Response, and Direct Metadata
Response, as depicted in Figure 6.3. Let us examine the main implications with a Gnutella
use case. A typical Gnutella query such as “Like a virgin” is matched by some hundreds of
files, most of them referring to replicas of the very same music file. Not all matching files
are identical because there exist multiple related songs (e.g. remixes, live recordings) and
multiple versions of a song (e.g. with different sampling rates). A music file has a size of at
least several megabytes. Many thousands of concurrent users submit queries to the Gnutella
network. A large fraction of users lives on slow and unreliable dialup connections.

5

4

6

3

27
6

5

3

4

2
Query
Result set

b)
Direct Response
without Invitation

7
6

5

3

4

2

d)
Routed Response

with Metadata (RRM)

109 1211

Data

Data Query

5

4

6

3

2

e)
Direct Metadata

Response without Invitation

Node

Originator

Agent Node

81

98 1110

71

81 71

4

8

3

2

c)
Direct Response

with Invitation (DR)

1

109567

Invitation

a)
Routed Response

(RR)

11

4

8

3

2

f)
Direct Metadata Response

with Invitation (DRM)

1

109567

111213
1514

Figure 6.3: Peer-to-Peer Response Modes.

• Routed Response. (Figure 6.3-a). Results are propagated back into the originator
along the paths on which the query flowed outwards. Each (passive) node returns to its
(active) client not only its own local results but also all remote results it receives from
neighbors. The response protocol is tightly coupled to the query protocol. Routing
messages through a logical overlay network of P2P nodes is much less efficient than
routing through a physical network of IP routers [90]. Routing back even a single
Gnutella file (let alone all results) for each query through multiple nodes would consume
large amounts of overall system bandwidth, most likely grinding Gnutella to a screeching
halt. As the P2P network grows, it is fragmented because nodes with low bandwidth

92 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

connections cannot keep up with traffic [91]. Consequently, routed responses are not
well suited for file sharing systems such as Gnutella. In general, overall economics
dictate that routed responses are not well suited for systems that return many and/or
large results.

• Direct Response With and Without Invitation. To better understand the un-
derlying idea, we first introduce the simpler variant, which is Direct Response Without
Invitation (Figure 6.3-b). Results are not returned by routing back through intermedi-
ary nodes. Each (active) node that has local results sends them directly to the (passive)
agent, which combines and hands them back to the originator. Response traffic does
not travel through the P2P system. It is offloaded via individual point-to-point data
transfers on the edges of the network. The response push protocol can be separated
from the query protocol. For example, HTTP, FTP or other protocols may be used for
response push. Let us examine the main implications with a use case.

As already mentioned, a typical Gnutella query such as “Like a virgin” is matched
by some hundreds of files, most of them referring to replicas of the very same music
file. For Gnutella users it would be sufficient to receive just a small subset of matching
files. Sending back all such files would unnecessarily consume large amounts of direct
bandwidth, most likely restricting Gnutella to users with excessive cheap bandwidth at
their disposal. Note however, that the overall Gnutella system would be only marginally
affected by a single user downloading, say, a million music files, because the largest
fraction of traffic does not travel through the P2P system itself.

In general, individual economics dictate that direct responses without invitation are not
well suited for systems that return many equal and/or large results, while a small subset
would be sufficient. A variant based on invitation (Figure 6.3-c) softens the problem
by inverting control flow. Nodes with matching files do not blindly push files to the
agent. Instead they invite the agent to initiate downloads. The agent can then act as
it sees fit. For example, it can filter and select a subset of data sources and files and
reject the rest of the invitations. Due to its inferiority, the variant without invitation
is not considered any further. In the remainder of this thesis, we use the term Direct
Response as a synonym for Direct Response With Invitation.

• Routed Metadata Response and Direct Metadata Response. Here interaction
consists of two phases. In the first phase, routed responses (Figure 6.3-d) or direct
responses (Figure 6.3-e,f)) are used. However, nodes do not return data results in
response to queries, but only small metadata results. The metadata contains just
enough information to enable the originator to retrieve the data results and possibly to
apply filters before retrieval. In the second phase, the originator selects, based on the
metadata, which data results are relevant. The (active) originator directly connects to
the relevant (passive) data sources and asks for data results. Again, the largest fraction
of response traffic does not travel through the P2P system. It is offloaded via individual
point-to-point data transfers on the edges of the network. The retrieval protocol can be
separated from the query protocol. For example, HTTP, FTP or other protocols may
be used for retrieval.

6.4. ROUTED VS. DIRECT RESPONSE, METADATA RESPONSES 93

The routed metadata response approach is used by file sharing systems such as Gnutella.
A Gnutella query does not return files; it just returns an annotated set of HTTP URLs.
The originator connects to a subset of these URLs to download files as it sees fit.
Another example is a service discovery system where the first phase returns a set of
service links instead of full service descriptions. In the second phase, the originator
connects to a subset of these service links to download service descriptions as it sees
fit. Another example is a referral system where the first phase uses routed metadata
response to return the service links of the set of nodes having local matching results
(“Go ask these nodes for the answer”). In the second phase, the originator or agent
connects directly to a subset of these nodes to query and retrieve result sets as it sees fit.
This variant avoids the “invitation storm” possible under Direct Response. Referrals
are also known as redirections3.

Comparison of Response Mode Properties. Let us compare the properties of the var-
ious response models. The following abbreviations are used. RR . . . Routed Response, RRM
. . . Routed Response with metadata, RRX . . . Routed Response with and without metadata,
DR . . . Direct Response, DRX . . . Direct Response with and without metadata.

• Distribution and Location Transparency. In the response models without meta-
data, the originator is unaware that (and how) tuples are partitioned among nodes.
In other words, these models are transparent with respect to distribution and loca-
tion. Metadata responses require an originator to contact individual data providers to
download full results, and hence are not transparent.

• (Efficient) Query Support. All models can answer any query. Both simple and
medium queries can be answered efficiently by RRX and DRX, whereas a complex
query cannot be answered efficiently. (Justification of this result is deferred to Section
6.5). Transmission of duplicate results unnecessarily wastes bandwidth. RRX can
eliminate duplicates already along the query path, whereas DRX can only do so in the
final stage, at the agent. Similarly, maximum result set size limiting is more efficient
under RRX because superfluous results can already be discarded along the query path.

• Economics. RR results travel multiple hops rather than just a single hop. This leads
to poor overall economics. The effect is more pronounced for large results, as is the
case for music files. RR can also lead to unfortunate individual economics. A user that
induces few or undemanding queries consumes few system resources. However, if many
heavy results for queries from other parties are routed back via such a user’s node, it
can end up in a situation where it pays for large amounts of bandwidth and gives it
away for free to anonymous third parties. For a given user, the costs may drastically
outweigh the gains. One could perhaps devise appropriate authorization, quality of
service and flow control policies. The unsatisfying economic situation is similar to the
one of physical IP routers on the Internet, which also forward traffic from and to third

3A metadata response mode with a radius scope of zero can be used to implement the referral behavior of
the Domain Name System (DNS). For details, see Section 6.11.

94 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

parties. In any case, there remains the fact that results travel multiple hops rather than
just one.

In principle, RRM has the same poor economic properties as RR. However, if metadata
is very small in size (e.g. as in Gnutella), then the incurred processing and transmission
cost may be acceptable. For example, Gnutella nodes just route back an annotated set
of HTTP URLs as metadata. Under DRX, result traffic does not travel through the
P2P system. Retrieving results is a deal between just two parties, the provider and the
consumer. Consequently, individual economics are controllable and predictable. A user
is not charged much for other peoples workloads, unless he explicitly volunteers.

• Number of TCP Connections at Originator. Under RR and DR, just one (or
no) TCP connection is required at the originator, whereas metadata modes require a
connection per (selected) data provider. The more data sources are selected, the more
heavyweight data retrieval becomes. Metadata modes can encounter serious latency
limitations due to the very expensive nature of secure (and even insecure) TCP con-
nection setup. Hence, the approach does not scale well. However, for many use cases
this may not be a problem because a client always selects only a small number of data
providers (e.g. 10).

• Number of TCP Connections at Agent. Usually a node has few neighbors (five
to hundreds). Under RRX, one TCP connection per neighbor is required at an agent.
Under DRX, additionally a connection per data provider is required. Again, the more
data providers exist, the more heavyweight data retrieval becomes. DRX can encounter
serious latency limitations due to the very expensive nature of secure (and even insecure)
TCP connection setup. For example, a query that finds the total number of services
in the domain cern.ch should use RRX. Under DRX, it may generate responses from
every single node in that domain. Consequently, an agent can face an invitation storm
resembling a denial of service attack. On the other hand, the potential to exploit
parallelism is large. All data providers can be handled independently in parallel.

• Latency. If a query is of a type that cannot support pipelining (see Section 6.6), the
latency for the first result to arrive at the originator is always poor. For a pipelined
query, the latency for the first result to arrive is small under DRX, because a response
travels a single hop only. Under RRX, a response travels multiple hops, and latency
increases accordingly. However, the cost of TCP connection setup at originator and/or
agent can invert the situation. Under RR, the cost of TCP connection setup to nodes
is paid only once (at node publication time), because connections can typically be kept
alive until node deregistration. This is not the case under the other response modes.

• Caching. Caching is a technique that trades content freshness for response time. RRX
can potentially support caching of content from other nodes at intermediate nodes be-
cause response flow naturally concentrates and integrates results from many nodes.
DRX nodes return results directly and independently, and hence cannot efficiently sup-
port caching.

6.4. ROUTED VS. DIRECT RESPONSE, METADATA RESPONSES 95

• Trust Delegation to Unknown Parties. Query and result traffic are subject to
security attacks. It is not sufficient to establish a secure mutually authenticated channel
between any two nodes because malicious nodes can divert routes or modify queries and
results. Since a query is almost always routed through multiple hops, many of which are
unknown to the agent, we believe that indirect delegation of trust to unknown parties
cannot practically be avoided4. Security sensitive applications should choose DRX
because at least the retrieval of results occurs in a predictable manner between just
two parties that can engage in secure mutual authentication and authorization. RRM
merely delegates trust on metadata results, but not on full results. The properties
discussed are summarized in Table 6.1.

Routed Response Direct Response Any Metadata
Response

Query supported Any Any Any

Query efficiently supported Simple, Medium Simple, Medium n.a.

Duplicate elimination Early Late n.a.

Maximum result set size limiting Early Late n.a.

Messages traveling in P2P system / Risk to
pay more than earn

Query and large re-
sults / Large

Query / Small Metadata instead
of results / small

First result latency assuming pipelining N hops, no connec-
tion setup

1 hop, connection
setup

n.a.

TCP connections at originator / Scalability in
the number of nodes having results

One / Good One / Good Large / Poor

TCP connections at agent / parallelism / Scal-
ability in the number of nodes having results

Small / Small / Good Large / Large / Poor n.a.

Caching possible Yes No n.a.

Trust delegation to unknown parties Query and Results Query + Metadata

Table 6.1: Comparison of Peer-to-Peer Response Mode Properties

Response Mode Switches and Shifts. Although from the functional perspective all
response modes are equivalent, clearly no mode is optimal under all circumstances. The
question arises as to what extent a given P2P network must mandate the use of any particular
response mode throughout the system. Observe that nodes are autonomous and defined by
their interface only. A node does not “see” what kind of response mode (or technology in
general) its neighbors use in answering a query. As long as query semantics are preserved,
the node does not care. Consequently, we propose that response modes can be mixed by
switches and shifts, in arbitrary permutations, as depicted in Figure 6.4.

• Routed Response ⇒ Direct Response switch. (Figure 6.4-a). Starting from the
agent, Routed Response is used initially. The central node (“football”) receives a query

4Even though trust delegation technologies exist [92], they do not scale to a significant number of au-
tonomous parties, let alone parties that dynamically join and leave. The problem is how to enable practical
establishment and administration of direct and indirect trust relationships.

96 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

b)
DR --> RR Switch

c)
DR --> DR Shift

====

a)
RR --> DR Switch

==

==
==

==

==
==

Query
Result set

Node

Originator

Agent Node

Figure 6.4: Response Mode Switches and Shifts.

from the agent. For some reason, it decides to answer the query using Direct Response.
The response flow that would have been taken under Routed Response is shown crossed
out.

• Direct Response ⇒ Routed Response switch. (Figure 6.4-b). Initially, Direct
Response is used. However, the “football” decides to answer the query using Routed
Response.

• Direct Response ⇒ Direct Response shift. (Figure 6.4-c). Initially, Direct Re-
sponse is used. The football decides to continue using Direct Response but shift the
target of responses. To its own neighbors the football declares itself as (a fake) agent.
The responses that would have flowed into the real agent now flow back into the foot-
ball, and then from the football to the real agent. Note again that this does not break
semantics because the football behaves as if the results would have been obtained from
its own local database. The real agent receives the same results, but solely from the
football.

• Routed Response ⇒ Routed Response shift. At each hop, the response target is
shifted to be the current node. Interestingly, this kind of shift is at the very heart of
the definition of routed response. The classification introduced here shows that this is
not the only possible approach.

A node may choose its response mode based on a local and autonomous assessment of
the advantages and disadvantages involved. However, because of its context knowledge, often
the client (e.g. originator) is in the best position to judge what kind of response mode would
be most suitable. Therefore, it is useful to allow specifying as part of the query a hint that
indicates the preferred response mode (routed or direct).

6.5 Query Processing

In a distributed database system, there exists a single local database and zero or more neigh-
bors. A classic centralized database system is a special case where there exists a single local

6.5. QUERY PROCESSING 97

database and zero neighbors. From the perspective of query processing, a P2P database
system has the same properties as a distributed database system, in a recursive structure.

Hence, we propose to organize the P2P query engine like a general distributed query engine
[45, 93]. A given query involves a number of operators (e.g. SELECT, UNION, CONCAT,
SORT, JOIN, GROUP, SEND, RECEIVE, SUM, MAX, MAXSETSIZE, IDENTITY) that
may or may not be exposed at the query language level. For example, the SELECT operator
takes a set and returns a new set with tuples satisfying a given predicate. The UNION
operator computes the union of two or more sets. The CONCAT operator concatenates the
elements of two or more sets into a list of arbitrary order (without eliminating duplicates)5.
The MAXSETSIZE operator limits the maximum result set size. The IDENTITY operator
returns its input set unchanged.

The semantics of an operator can be satisfied by several operator implementations, using
a variety of algorithms, each with distinct resource consumption, latency and performance
characteristics. The query optimizer chooses an efficient query execution plan, which is a tree
plugged together from operators. In an execution plan, a parent operator consumes results
from child operators. Query execution is driven from the (final) root consumer in a top down
fashion. For example, a request for results from the root operator may in turn lead to a
request for results from child operators, which in turn request results from their own child
operators, and so on. By means of an execution plan, an optimizer can move a query to data
or data to a query. In other words, queries and sub queries can be executed locally or at
remote nodes. Performance tradeoffs of query shipping, data shipping and hybrid shipping
are discussed in [94].

Template Query Execution Plan. Recall that Section 3.2 proposed a query model.
Any query Q within our query model can be answered by an agent with the template execution
plan A depicted in Figure 6.5. The plan applies a local query L against the tuple set of the
local database. Each neighbor (if any) is asked to return a result set for (the same) neighbor
query N. Local and neighbor result sets are unionized into a single result set by a unionizer
operator U that must take the form of either UNION or CONCAT. A merge query M is applied
that takes as input the result set and returns a new result set. The final result set is sent to
the client, i.e. another node or an originator.

Centralized Execution Plan. To see that indeed any query against any kind of database
system can be answered within this framework we derive a simple centralized execution plan
that always satisfies the semantics of any query Q. The plan substitutes specific subplans into
the template plan A, leading to distinct plans for the agent node (Figure 6.6-a) and neighbors
nodes (Figure 6.6-b). More specifically, in the case of XQuery and SQL, parameters are
substituted as follows:

5A list can be emulated by a set using distinct surrogate keys.

98 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

L ... Local Query
M ... Merge Query

Q ... User Query

N ... Neighbor Query

SEND

M

U

L ... RECEIVEk

N

RECEIVE1

N

A

U ... Unionizer Operator

A ... Agent Plan

Figure 6.5: Template Execution Plan.

XQuery SQL

A: M = Q

U = UNION

L = "RETURN /"

N’ = N

N: M = IDENTITY

U = UNION

L = "RETURN /"

N’ = N

A: M = Q

U = UNION

L = "SELECT *"

N’ = N

N: M = IDENTITY

U = UNION

L = "SELECT *"

N’ = N

Q ... User Query
N ... Neighbor Query Plan

a) Agent Query Plan

SEND

Q

UNION

RETURN / ... RECEIVEk

N

RECEIVE1

N

A

SEND

UNION

RETURN / ... RECEIVEk

N

RECEIVE1

N

N

IDENTITY

b) Neighbor Query Plan

A ... Agent Query Plan

Figure 6.6: Centralized Execution Plan. The Agent Query Plan (a) fetches all raw tuples
from the local and all remote databases, unionizes the result sets, and then applies the query
Q. Neighbors are handed a rewritten neighbor query (b) that recursively fetches all raw tuples,
and returns their union.

In other words, the agent’s plan A fetches all raw tuples from the local and all remote
databases, unionizes the result sets, and then applies the query Q. Neighbors are handed a
rewritten neighbor query N that recursively fetches all raw tuples, and returns their union.
The neighbor query N is recursively partitionable (see below).

6.5. QUERY PROCESSING 99

The same centralized plan works for routed and direct response, both with and without
metadata. Under direct response, a node does forward the query N, but does not attempt to
receive remote result sets (conceptually empty result sets are delivered). The node does not
send a result set to its predecessor, but directly back to the agent.

In a distributed database system, there exists a single local database and zero or more
neighbors. A classic centralized database system is a special case where there exists a sin-
gle local database and zero neighbors. From the perspective of query processing, a P2P
database system has the same properties as a distributed database system, in a recursive
structure. Consequently, the very same centralized execution plan applies to any kind of
database system; and any query within our query model can be answered.

The centralized execution plan can be inefficient because potentially large amounts of
base data have to be shipped to the agent before locally applying the user’s query. However,
sometimes this is the only plan that satisfies the semantics of a query. This is always the case
for a complex query. A more efficient execution plan can sometimes be derived (as proposed
below). This is always the case for a simple and medium query.

Recursively Partitionable Query. A P2P network can be efficient in answering queries
that are recursively partitionable. A query Q is recursively partitionable if, for the template
plan A, there exists a merge query M and a unionizer operator U to satisfy the semantics of
the query Q assuming that L and N are chosen as L = Q and N = A. In other words, a query is
recursively partitionable if the very same execution plan can be recursively applied at every
node in the P2P topology. The corresponding execution plan is depicted in Figure 6.7.

M ... Merge Query
Q ... User Query

SEND

M

U

Q ... RECEIVEk

A

RECEIVE1

A

A

U ... Unionizer Operator

A ... Agent Plan

Figure 6.7: Execution Plan for Recursively Partitionable Query.

The input and output of a merge query have the same form as the output of the local query
L. Query processing can be parallelized and spread over all participating nodes. Potentially
very large amounts of information can be searched while investing little resources such as
processing time per individual node. The recursive parallel spread of load implied by a
recursively partitionable query is the basis of the massive P2P scalability potential. However,
query performance is not necessarily good, for example due to high network I/O costs.

Now we are in the position to clarify the definition of simple, medium and complex queries.

• Simple Query. A query is simple if it is recursively partitionable using M = IDENTITY,

100 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

U = UNION (e.g. QS1 - QS7, Q20 - Q22).

• Medium Query. A query is a medium query if it is not simple, but it is recursively
partitionable (QM1 - QM5 and Q25 - Q26).

• Complex Query. A query is complex if it is not recursively partitionable (e.g. QC1 -
QC3).

It is an interesting open question (at least to us) if a query processor can automatically
determine whether a correct merge query and unionizer exist, and if so, how to choose them.
Related problems have been studied extensively in the context of distributed and parallel
query processing as well as query rewriting for heterogeneous and homogenous relational
database systems [45, 95, 93]. Distributed XQueries are an emerging field [96]. For simplicity,
in the remainder of this thesis we assume that the user explicitly provides M and U along with
a query Q. If M and U are not provided as part of a query to any given node, the node acts
defensively by assuming that the query is not recursively partitionable. Choosing M and U is
straightforward for a human being. Consider for example the following medium XQueries.

• (QM2) Return the number of replica catalogs services. The merge query computes the
sum of a set of numbers6. The unionizer is CONCAT.

Q = RETURN

<tuple>

count(/tupleset/tuple/content/service[interface/@type="repcat"])

</tuple>

M = RETURN

<tuple>

sum(/tupleset/tuple)

</tuple>

U = CONCAT

• (QM1) Find the service with the largest uptime.

Q=M= RETURN (/tupleset/tuple[@type="service"] SORTBY (./@uptime)) [last()]

U = UNION

A custom merge query can be useful. For example, assume that each individual result
tuple is tagged with a timestamp indicating the time when the information expires and
ceases to be valid. A custom merge query can ignore all results that have already expired.
Alternatively, it can ignore all results but the one with the most recent timestamp. As
another example, a custom merge query can cut off all but the first 100 result tuples. Such a
result set size limiting feature (maxResults) attempts to make bandwidth consumption more
predictable.

6Recall from Section 3.3 that the query engine always encapsulates the query output with a tupleset root
element. A query need not generate this root element as it is implicitly added by the environment.

6.6. PIPELINING 101

6.6 Pipelining

The success of many applications depends on how fast they can start producing initial/relevant
portions of the result set rather than how fast the entire result set is produced [97]. This is
particularly often the case in distributed systems where many nodes are involved in query
processing, each of which may be unresponsive for many reasons. The situation is even more
pronounced in systems with loosely coupled autonomous nodes.

Often an originator would be happy to already do useful work with one or a few early
results, as long as they arrive quickly and reliably. Results that arrive later can be handled
later, or are ignored anyway. For example, in an interactive session, a typical Gnutella user
is primarily interested in being able to start some music download as soon as possible. The
user is quickly disappointed when not a single result for a query arrives in less than four
seconds. Choosing among 1000 species of “Like a virgin” is interesting, but helps little if it
comes at the expense of, say, one minute idle waits. As another example, consider a user that
wants to discover schedulers to submit a job. It is interesting to discover that 100 schedulers
are available, but the primary requirement is to find at least three quickly and reliably.

Database theory and practice establishes that query execution engines in general, and
distributed query execution engines in particular should be based on iterators [45]. An
operator corresponds to an iterator class. Iterators of any kind have a uniform interface,
namely the three methods open(), next() and close(). In an execution plan, a parent
iterator consumes results from child iterators. Query execution is driven from the (final) root
consumer in a top down fashion. For example, a call to next() may call next() on child
iterators, which in turn call next() on their child iterators, and so on. For efficiency, the
method next() can be asked to deliver several results at once in a so-called batch. Semantics
are as follows: “Give me a batch of at least N and at most M results” (less than N results
are delivered when the entire query result set is exhausted). For example, the SEND and
RECEIVE network communication operators (iterators) typically work in batches.

The monotonic semantics of certain operators such as SELECT, UNION, CONCAT,
SEND, RECEIVE, MAXSETSIZE, IDENTITY allow that operator implementations con-
sume just one or a few child results on next(). In contrast, the non-monotonic semantics
of operators such as SORT, GROUP, MAX, some JOIN methods, etc. require that operator
implementations consume all child results already on open() in order to be able to deliver a
result on the first call to next(). Since the output of these operators on a subset of the input
is not, in general, a subset of the output on the whole input, these operators need to see all of
their input before they produce the correct output. This does not break the iterator concept
but has important latency and performance implications. Whether the root operator of an
agent exhibits a short or long latency to deliver to the originator the first result from the
result set depends on the query operators in use, which in turn depend on the given query.
In other words, for some query types the originator has the potential to immediately start
piping in results (at moderate performance rate), while for other query types it must wait for
a long time until the first result becomes available (the full result set arrives almost at once,
however).

A query (an operator implementation) is said to be pipelined if it can already produce at
least one result tuple before all input tuples have been seen. Otherwise, a query (an operator)

102 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

10

3

2

4

1

96

87

11510
9

4

2

3

1

85

76

Query
Result set

Node

Originator

Agent Node

Figure 6.8: Non-Pipelined (left) and Pipelined Query (right).

Query Type Supports Pipelining?

Simple Query Yes

Medium Query Maybe

Complex Query Typically No

Table 6.2: Pipelining Support of Query Types.

is said to be non-pipelined. Figure 6.8 depicts examples for both modes.
Simple queries do support pipelining (e.g. Gnutella queries). Medium queries may or may

not support pipelining, whereas complex queries typically do not support pipelining. The
properties are summarized in Table 6.2.

Bear in mind, that even if a query can be pipelined, the messaging model and underlying
network layers in use may not support pipelining, in which case a result set has to be delivered
with long latency in a single large batch. To this end, Chapter 7 proposes a Peer Database
Protocol (as opposed to query operator implementations) that efficiently supports pipelining
and non-pipelining, and is applicable to any centralized, distributed or P2P architecture,
including routed response and direct response, both with and without metadata modes.
Finally note that non-pipelining delivery without a dynamic abort timeout feature is highly
unreliable due to the so-called simultaneous abort problem (see below). If only one of the
many nodes in the query path fails to be responsive for whatever reasons, all other nodes in
the chain are waiting, eventually time out at the same time, and the originator receives not
even a single result.

6.7 Static Loop Timeout and Dynamic Abort Timeout

Clearly there comes a time when a user is no longer interested in query results, no matter
whether any more results might be available. The query roaming the network and its response
traffic should fade away after some time. In addition, P2P systems are well advised to
attempt to limit resource consumption by defending against runaway queries roaming forever
or producing gigantic result sets, either unintended or malicious. To address these problems,
an absolute abort timeout is attached to a query, as it travels across hops. An abort timeout

6.7. STATIC LOOP TIMEOUT AND DYNAMIC ABORT TIMEOUT 103

can be seen as a deadline. Together with the query, a node tells a neighbor “I will ignore
(the rest of) your result set if I have not received it before 12:00:00 today.” The problem,
then, is to ensure that a maximum of results can be delivered reliably within the time frame
desired by a user.

The value of a static timeout remains unchanged across hops, except for defensive mod-
ification in flight triggered by runaway query detection (e.g. infinite timeout). In contrast,
it is intended that the value of a dynamic timeout be decreased at each hop. Nodes further
away from the originator may time out earlier than nodes closer to the originator.

Dynamic Abort Timeout. A static abort timeout is entirely unsuitable for non-pipelined
result set delivery, because it leads to a serious reliability problem, which we propose to call
simultaneous abort timeout. If just one of the many nodes in the query path fails to be
responsive for whatever reasons, all other nodes in the path are waiting, eventually time out
and attempt to return at least a partial result set. However, it is impossible that any of these
partial results ever reach the originator, because all nodes time out simultaneously (and it
takes some time for results to flow back). For example, the agent times out and attempts
to return its local partial results to the originator. After that, all partial results flowing to
the agent from neighbors, and their neighbors, etc. are discarded – it is already too late.
However, even the agent cannot deliver results to the originator because the originator has
already timed out (shortly) before the results arrive. Hence, the originator receives not even
a single result if just one of the many nodes in the query path fails to be responsive.

To address the simultaneous abort timeout problem, we propose dynamic abort timeouts.
Under dynamic abort timeout, nodes do not time out at the same time. Instead, nodes further
away from the originator time out earlier than nodes closer to the originator. This provides
some safety time window for the partial results of any node to flow back across multiple hops
to the originator. Together with the query, a node tells a neighbor “I will ignore (the rest
of) your result set if I have not received it before 12:00:00 today. Do whatever you think is
appropriate to meet this deadline”. Intermediate nodes can and should adaptively decrease
the timeout value as necessary, in order to leave a large enough time window for receiving
and returning partial results subsequent to timeout.

Observe that the closer a node is to the originator, the more important it is (because if
it cannot meet its deadline, results from a large branch are discarded). Further, the closer

10
9

4

2

3

1

85

76

t+4

t+2

t+1

t+0.5

Query
Result set

Node

Originator

Agent Node

Figure 6.9: Dynamic Abort Timeout.

104 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

a node is to the originator, the larger is its response and bandwidth consumption. Thus, as
a good policy to choose the safety time window, we propose exponential decay with halving.
The window size is halved at each hop, leaving large safety windows for important nodes
and tiny window sizes for nodes that contribute only marginal result sets. Also, taking into
account network latency and the time it takes for a query to be locally processed, the timeout
is updated at each hop N according to the following recurrence formula:

timeoutN = currenttimeN +
timeoutN−1 − currenttimeN

2
(6.1)

Consider for example Figure 6.9. At time t the originator submits a query with a dynamic
abort timeout of t+4 seconds. In other words, it warns the agent to ignore results after time
t+4. The agent in turn intends to safely meet the deadline and so figures that it needs to
retain a safety window of 2 seconds, already starting to return its (partial) results at time
t+2. The agent warns its own neighbors to ignore results after time t+2. The neighbors also
intend to safely meet the deadline. From the 2 seconds available, they choose to allocate
1 second, and leave the rest to the branch remaining above. Eventually, the safety window
becomes so small that a node can no longer meet a deadline on timeout. The results from
the unlucky node are ignored, and its partial results are discarded. However, other nodes
below and in other branches are unaffected. Their results survive and have enough time to
hop all the way back to the originator before time t+4.

Instead of ignoring results which miss their deadline a node may also close the connection.
This may, but need not, be harmless. The connection is typically simply reestablished as soon
as a new query is to be forwarded. However, in an attempt to educate good P2P citizens,
a node may choose to stop propagating or deny service to neighbors that repeatedly do not
meet abort deadlines. For example, a strategy may use an exponential back-off algorithm.
Note that as long as a node obeys its timeout it can independently implement any timeout
policy it sees fit for its purposes without regard to the policy implemented at other nodes.
If a node misbehaves or maliciously increases the abort timeout, it risks not being able to
meet its own deadline, and is likely soon dropped or denied service. Such healthy measures
move less useful nodes to the edge of the network where they cause less harm, because their
number of topology links tends to decrease.

To summarize, under non-pipelined result set delivery, dynamic abort timeouts using
exponential decay with halving ensure that a maximum of results can be delivered reliably
within the time frame desired by a user. We speculate that dynamic timeouts could also
incorporate sophisticated cost functions involving latency and bandwidth estimation and/or
economic models.

Static Loop Timeout. Interestingly, a static loop timeout is required in order to fully
preserve query semantics. A dynamic timeout (e.g. the dynamic abort timeout) is un-
suitable to be used as loop timeout. Otherwise, a problem arises that we propose to call
non-simultaneous loop timeout. Recall from Section 6.3 that the same query may arrive at
a node multiple times, along distinct routes, perhaps in a complex pattern. Loops in query
routes must be detected and prevented. Otherwise, unnecessary or endless multiplication of
workloads would be caused. To this end, a node maintains a state table of recent transaction

6.7. STATIC LOOP TIMEOUT AND DYNAMIC ABORT TIMEOUT 105

identifiers and associated loop timeouts and returns an error whenever a query is received
that has already been seen (according to the state table). Before the loop timeout is reached,
the same query can potentially arrive multiple times, along distinct routes. On loop timeout,
a node may “forget” about a query by deleting it from the state table. To be able to reliably
detect a loop, a node must not forget a transaction identifier before its loop timeout has been
reached.

However, let us assume for the moment that a dynamic timeout (e.g. the dynamic abort
timeout) is used as loop timeout. Consider for example, Figure 6.10, which is identical to
Figure 6.9 except that the agent has an additional neighbor that can potentially receive the
query along more than one path. At time t the originator submits a query with a dynamic
abort timeout of t+4 seconds. The agent in turn warns its own neighbors to ignore results
after time t+2. Request 5 is sent and arrives, is processed, and its results (step 8) are delivered
before the dynamic abort timeout of time t+1. At time t+1 the loop timeout is reached and
the query is deleted from the state table. For many reasons, including temporary network
segment problems and sequential neighbor processing, request 10 can be delayed. In the
example it arrives after time t+1. By this time, the receiving node has already forgotten
that it already handled the very same query. Hence, the node cannot detect the loop and
continues to process and forward (step 11, 12) the same query again.

Query
Result set

Node

Originator

Agent Node

14
9

4

2

3

1

85

76

t+4

t+2

t+1

t+0.5

arrives at
t+1.5

returns at
t+1.8

10

13

t+1.75
11 12

Figure 6.10: Loop Detection Failure with Dynamic Loop Timeout.

The non-simultaneous loop timeout problem is caused by the fact that some nodes still
forward the query to other nodes when the destinations have already forgotten it. In other
words, the problem is that loop timeout does not occur simultaneously everywhere. Conse-
quently, a loop timeout must be static (does not change across hops) to guarantee that loops
can reliably be detected. Along with a query, an originator not only provides a dynamic
abort timeout, but also a static loop timeout. Initially at the originator, both values must
be identical (e.g. t+4). After the first hop, both values become unrelated.

To summarize, we have abort timeout ≤ loop timeout. Loop timeouts must be static
whereas abort timeouts may be static or dynamic. Under non-pipelined result set delivery,
dynamic abort timeouts using exponential decay with halving ensure that a maximum of
results can be delivered reliably within the time frame desired by a user. A dynamic abort
timeout model still requires static loop timeouts to ensure reliable loop detection, so that a
node does not forward and answer the same query multiple times.

106 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

Finally, note that to allow for meaningful comparison, sources generating time stamps
and sinks processing time stamps must be synchronized, for example using the NTP network
time protocol [72]. Further, nodes in the system must share a common representation of time.
We subsequently assume a straightforward standard representation: the difference, measured
in milliseconds, between the given UTC time and midnight, January 1, 1970 UTC.

6.8 Query Scope

As in a data integration system, the goal is to exploit several independent information sources
as if they were a single source. This is important for distributed systems in which node
topology or deployment model change frequently. For example, cross-organizational Grids
and P2P networks exhibit such a character. However, in practice, it is often sufficient (and
much more efficient) for a query to consider only a subset of all tuples (service descriptions)
from a subset of nodes. For example, a typical query may only want to search tuples (services)
within the scope of the domain cern.ch and ignore the rest of the world.

Recall that to this end, Section 3.2 cleanly separated the concepts of (logical) query and
(physical) query scope. A query is formulated against a global database view and is insensitive
to link topology and deployment model. In other words, to a query the set of tuples appears as
a single homogenous database, even though the set may be (recursively) partitioned across
many nodes and databases. This means that in a relational or XML environment, at the
global level, the set of all tuples appears as a single, very large, table or XML document,
respectively. The query scope, on the other hand, is used to navigate and prune the link
topology and filter on attributes of the deployment model. Conceptually, the scope is the
input fed to the query. The query scope is a set and may contain anything from all tuples in
the universe to none. Both query and scope can prune the search space, but they do so in a
very different manner.

A query scope is specified either directly or indirectly. For example, one can directly
enumerate the tuples (service descriptions) to be considered. However, this is usually im-
practical. One can also indirectly define a query scope by specifying a set of nodes, implying
that the query should be evaluated against the union of all tuples contained in their respec-
tive databases. One can distinguish scopes based on neighbor selection, timeout and radius.
Note that for security reasons a node may choose to ignore or override a third party provided
query scope, for example to guard against runaway queries with infinite scope.

Neighbor Selection. For simplicity, all our discussions so far have implicitly assumed a
broadcast model (on top of TCP) in which a node forwards a query to all neighbor nodes.
However, in general one can select a subset of neighbors, and forward concurrently or sequen-
tially. Fewer query forwards lead to less overall resource consumption. The issue is critical
because of the snowballing (epidemic, flooding) effect implied by broadcasting. Overall band-
width consumption grows exponentially with the query radius, producing enormous stress on
the network and drastically limiting its scalability. For details, consult [98, 90].

Clearly selecting a neighbor subset can lead to incomplete coverage, missing important
results. The best policy to adopt depends on the context of the query and the topology.

6.8. QUERY SCOPE 107

Context is required to improve on the broadcast model. For example, it makes little sense to
forward a Gnutella query to non-Gnutella nodes. The scope can select only neighbors with a
service description of interface type ”Gnutella”. In an attempt to explicitly exploit topology
characteristics, a virtual organization of a Grid may deliberately organize global, intermediate
and local job schedulers into a tree-like topology. Correct operation of scheduling may require
reliable discovery of all or at least most relevant schedulers in the tree. In such a scenario,
random selection of half of the neighbors at each node is certainly undesirable. A policy that
selects all child nodes and ignores all parent nodes may be more adequate.

Further, a node may maintain statistics about its neighbors. One may only select neigh-
bors that meet minimum requirements in terms of latency, bandwidth or historic query
outcomes (maxLatency, minBandwidth, minHistoricResult). Other node properties such
as hostname, domain name, owner, etc. can be exploited in query scope guidance, for exam-
ple to implement security policies. Consider an example where the scheduling system may
only trust nodes from a select number of security domains. Here a query should never be
forwarded to nodes not matching the trust pattern.

Further, in some systems, finding a single result is sufficient. In general, a user or any
given node can guard against unnecessarily large result sets, message sizes and resource
consumption by specifying the maximum number of result tuples (maxResults) and bytes
(maxResultsBytes) to be returned. Using sequential propagation, depending on the number
of results already obtained from the local database and a subset of the selected neighbors,
the query may no longer need to be forwarded to the rest of the selected neighbors.

Neighbor Selection Query. For flexibility and expressiveness, we propose to allow the
user to specify the selection policy. In addition to the normal query, the user defines a
neighbor selection query (XQuery) that takes the tuple set of the current node as input and
returns a subset that indicates the nodes selected for forwarding. For example, a neighbor
query implementing broadcasting selects all services with registry publication and P2P query
capabilities, as follows:

RETURN /tupleset/tuple[@type="service"

AND content/service/interface[@type="Consumer-1.0"]

AND content/service/interface[@type="XQuery-1.0"]]

A wide range of policies can be implemented in this manner. The neighbor selection
policy can draw from the rich set of information contained in the tuples published to the
node. Tuple metadata such as type, context, timestamps, etc. can be used for neighbor
selection decisions (see Section 4.3). Further, recall that the set of tuples in a database may
not only contain service descriptions of neighbor nodes (e.g. in WSDL or SWSDL), but also
other kind of content published from any kind of content provider. For example, this may
include host and network information as well as statistics a node periodically publishes to its
immediate neighbors.

For example, broadcast and random selection can be expressed with a neighbor query.
One can select nodes that support given interfaces (e.g. Gnutella, Freenet or job scheduling).
In a tree topology, a policy can use the tuple context attribute to select all child nodes
and to ignore all parent nodes. One can implement domain filters and security filters (e.g.

108 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

allow/deny regular expressions as used in the Apache HTTP server) if the tuple set includes
metadata such as hostname and node owner. Power-law policies [29] can be expressed if
metadata includes the number of neighbors to the n-th radius.

As usual, for security reasons, a node may choose to ignore, override or extend any
scope hints it receives. The neighbor query concept can also be used for flexible policy
implementation internal to a node. In this case, a node always ignores the user provided
neighbor query and uses an internal custom neighbor selection query instead.

Timeout. Clearly there comes a time when a user is no longer interested in query results,
no matter whether any more results might be available. The query roaming the network and
its response traffic should fade away after some time. Section 6.7 already discussed in depth
this issue and its implications on loop detection and non-pipelined result set delivery. Here
we just note that timeouts clearly belong to the query scope, rather than the query itself.

Radius. The radius of a query is a measure of path length. More precisely, it is the
maximum number of hops a query is allowed to travel on any given path. The radius is
decreased by one at each hop. The roaming query and response traffic must fade away
upon reaching a radius of less than zero. A scope based on radius serves similar purposes
as a timeout. Nevertheless, timeout and radius are complementary scope features. The
radius can be used to indirectly limit result set size. In addition, it helps to limit latency
and bandwidth consumption and to guard against runaway queries with infinite lifetime. In
Gnutella and Freenet, the radius is the primary means to specify a query scope7. Neither of
these systems support timeouts.

For maximum result set size limiting, a timeout and/or radius can be used in conjunction
with neighbor selection, routed response, and perhaps sequential forward, to implement the
expanding ring [99] strategy. The term stems from IP multicasting. Here an agent first
forwards the query to a small radius/timeout. Unless enough results are found, the agent
forwards the query again with increasingly large radius/timeout values to reach further into
the network, at the expense of increasingly large overall resource consumption. On each
expansion radius/timeout are multiplied by some factor.

We now turn to some more subtle points. When precisely does the radius trigger the end
of query life? A node rejects a query with a radius less than zero. When a node accepts a
query, the radius is decreased by one, and the query is evaluated. The query is not forwarded
to neighbors if the new radius is less than zero. In other words, a new radius less than zero
forces a neighbor selection policy that yields an empty set. For example, an originator can
determine the neighbors of an agent by sending it a query with a radius of zero hops.

Note that the radius is not defined to be the number of hops a query is allowed to travel
on any given path. Rather, it is more weakly defined to be the maximum number of hops a
query is allowed to travel on any given path. In other words, it is not guaranteed that a query
takes the shortest path from the agent to any given node, thereby covering a total maximum
of nodes. There are two reasons for this kind of definition. First, a node may choose to
decrease the radius by any value it sees fit in order to reduce resource consumption or to

7The radius is termed TTL (time-to-live) in these systems.

6.8. QUERY SCOPE 109

prevent system exploitation. Second, loop detection and unpredictable timing in distributed
systems can lead to a phenomenon we propose to call greedy radius pruning. Recall that the
very same query may arrive at a node multiple times, along distinct routes, perhaps in a
complex pattern. Traveling N hops decreases the radius of a query by N. If the query first
arrives via a route with many (fast) hops, and later arrives again via a route with few (slow
hops), the second arrival will be detected as a loop and rejected. However, the successfully
forwarded (first) query continues to travel less hops than theoretically possible considering
the (larger) radius of the second query. If the second query had arrived first, the query would
have been able to travel further and potentially collect more matching results. Propagating
a query to all neighbors concurrently may somewhat increase query coverage, in particular
in homogenous LANs.

We conclude this section with a list of more speculative means to indirectly specify a
query scope.

Multiple Entry Nodes. Suppose an originator using a dumb front end to a central remote
agent (e.g. the user of a HTML GUI) knows a set of useful nodes (besides its own agent)
as entry points for answering a query. For example, it may know one node in each of the
participating laboratories of a virtual organization with global spread. Along with the query,
the originator may want to provide to its agent a list of entry nodes for query forward. This
kind of behavior seems to be at odds with the spirit of P2P computing because communicating
nodes are no longer connected as neighbors. The behavior most likely cannot be emulated
by temporarily including the entry nodes as neighbors of the agent, because the originator
most likely has no administrative control over the central agent, in particular considering
the potential for denial of service attacks. In addition, side effects may occur if multiple
originators sharing the same agent modify the set of neighbors. Should the behavior reside
in the originator rather than the agent? This appears to be the cleanest approach. If the
originator is too limited to implement complex logic, a mediator between originator and agent
should be introduced that handles query forward to multiple agents, and subsequent result
set merging.

Path Selection. One can envision a powerful way to navigate and prune the topology via
a path expression, as seen from the originator. This can be of significant practical value.
For example, for security reasons one may want to forward a query solely along cern.ch
node paths, ignoring the rest of the world. In other words, any given node should receive
the query only if there exists a continuous path of cern.ch nodes from the node back to
the agent. This includes nodes from other domains that are directly reachable from cern.ch
nodes. It excludes cern.ch nodes that can only be reached via nodes from other domains.
The corresponding XQuery path expression reads as follows:

LET $d := ("cern.ch", "infn.it")

RETURN //node[contains($d, domainname(service)) AND

contains($d, domainname(ancestor::node/service))

]/service

110 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

To support such a capability a node must parse the path query, see which neighbors
apply (if any) and forward a rewritten path query to them. The rewritten path query must
exclude the path expression applying to the current node, essentially removing a hop from
the expression. It is an open question (at least to us) how to rewrite the query correctly.
Consequently, we do not consider this capability any further.

6.9 Containers for Centralized Virtual Node Hosting

A node link topology can be deliberately arranged and exploited by applications. For exam-
ple, in an attempt to explicitly exploit topology characteristics, a virtual organization of a
Grid may deliberately organize global, intermediate and local job schedulers into a tree-like
topology. Correct and efficient operation of scheduling may involve queries with a neighbor
selection policy that selects all child nodes and ignores all parent nodes. For the scheduling
query, it is irrelevant where the nodes are running, and where and how nodes (tuples, service
descriptions) are stored. What matters is that the query traverses a tree.

A link topology such as a star, ring, tree or graph describes the link structure among
nodes, i.e. which nodes are linked with which other nodes. It is purely a logical construct.
It does not describe where and how this link information is stored and accessed. This is
defined by a node deployment model, which defines where and how one or more partitions of
the graph are running, stored and accessed.

We argue that link topology and node deployment are distinct and orthogonal concepts,
and hence a node deployment model need not correspond to a link topology at all. Consider
the analogy to the WWW: The WWW is a graph of HTML pages. Vertices are established
through embedded HTML hyperlinks. The graph topology is, by definition, insensitive to
how and where HTML pages are physically stored and served (on which hosts, URL paths,
and web server technologies). The topology remains identical, no matter whether all pages
of the universe are served by a single large dynamic web server or any kind of worldwide
federation of static web servers.

The simplest (and most common) deployment model has distinct nodes running on dis-
tinct hosts. However, we propose that nodes can also be concentrated in central places called
node containers. A node container is a transparent software hosting environment that em-
beds one or more nodes, as depicted in Figure 6.11. The set of all nodes in the universe is
partitioned over one or more node containers. A container can be a special-purpose program
that behaves as if it were a network of nodes (virtual hosting). A well-known example for
virtual hosting is web serving. A web server can serve millions of static or dynamic pages
from an essentially infinitely large name space of URLs (nodes). To the outside world, the
server is invisible, and each URL (node) can be seen as a separate service (having a name
or address, HTTP network protocol, TLS security, etc). Of course, internally just one or a
few processes are used to implement such virtual hosting. A general-purpose container, on
the other hand, can run each node (or each request to a node) in an independent process or
thread (physical hosting). For example, virtual and physical hosting is used in Java servlet
[100] and Enterprise Java Beans technology [101].

In any case, the container is invisible to the outside world. Hosted nodes still appear and

6.9. CONTAINERS FOR CENTRALIZED VIRTUAL NODE HOSTING 111

B(2)

D(4)C(3)

E(5)

F(6)

H(8)

I(9)

A(1)

G(7)

Container

Internal(B)={C,D,B,E}
External(B)={A,F}

Internal={B,C,D,E,G,H}
External={A,F,I}

Figure 6.11: Node Containers.

behave like any other node. In our case, this means that a hosted node has a service link
and description, and it supports publication, queries, etc. via the operations and network
protocols advertised by the service description. The fundamental difference to classic database
architectures is that in the latter there exists no deployment transparency. As an extreme
example of virtual hosting, one could imagine a hypothetical relational database system that
exposes each individual tuple as a network service, supporting direct network connections
to the tuple to answer queries against its column values. Conceptually, we can say that
every node runs within a container, even if the container holds only a single node. A remote
client may ask for the dynamic creation of a virtual or physical node by means of a node
factory interface. Now we are in the position to define a node deployment model as being a
description of the set of containers physically implementing a given link topology.

Several node deployment models can be envisaged, ranging from coarse to fine grained,
as well as arbitrary mixtures. For example, in a centralized deployment scenario, the entire
global graph of, say 108, nodes may be accessible through a single container, with all nodes
(service interfaces) being handled by a single process on a single host. In a slightly less central
scenario, the same graph may be partitioned among ten organizations, each with a central
container as described above. Figure 6.12 depict examples along these lines. On the fully
distributed end of the spectrum, each node may run on a distinct box, storing its own tuples
(including neighbor descriptions) in a local registry. In all but the first case, there neither
exists a single grand monolithic database nor a single owner and provider of information.

There are two primary motivations why concentrating nodes may be useful. First, for
reasons including central control, reliability, continuous availability, maintainability, security,
accounting and firewall restrictions on incoming connections for hosts. These reasons are
important, but we do not delve into them any further. Similarly, we do not consider physical
hosting any further. Instead, we focus on the second motivation, which is the potential of
virtual hosting for increased performance (as opposed to increased scalability).

In any kind of P2P network, a node has a database or some kind of data source against
which queries are applied. In a P2P network for service discovery, this database happens

112 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

Figure 6.12: Containers partitioning a graph.

to be the publication database. Discussion in this section is applicable to any kind of P2P
network, while the examples illustrate service discovery.

If many container nodes reside on the same host, in the same process and store their
tuples (e.g. node service descriptions, Gnutella file indexes) in the same database, query
support is potentially much more efficient. The query engine can run on “big iron”. The
database may fit in its entirety in a main memory buffer. Network communication between
remote nodes can be replaced with local loop-back connections, inter-process communication
or even direct function calls. To compute the full query result set for all container nodes,
it may perhaps be sufficient to execute just one or a few batch queries against the shared
database, instead of many small queries against separate databases. Intuitively it seems that
the smaller nodes are, the more performance can be gained through virtual hosting. For
example, consider a network with millions of small registry nodes spread all over the world,
each holding just some ten tuples. Perhaps searching would be much more efficient if the
nodes and their databases were just partitioned across a few, say a hundred, powerful node
containers.

Consider the three example containers depicted in Figure 6.11. The central container
has six internal nodes (B,C,D,E,G,H) and three external nodes (A,F,I). External nodes
belong to other containers. Internal links connect nodes within the container. External
links connect internal with external nodes. A hop is said to be logical if it travels along an
internal or external link. A hop is said to be physical if it travels along an external link.
Intuitively it is clear that traversing an internal link is much cheaper than traversing an
external link. Accordingly we propose to distinguish the separate scope parameters logical
radius and physical radius. For example, a user can specify that a query should reach very
far, say a logical radius of 100 hops. To ensure that this query does not burden all nodes in
the universe, the user can specify that it should touch at most three containers on any given
path (physical radius).

6.10 Query Processing with Virtual Nodes

In this section, we propose three query execution strategies. A query to a node of a container
can be efficiently answered without violating the semantics of query and scope (normal query
execution, collecting traversal). Even more efficiently, it can be answered by relaxing the
conditions imposed by the query scope (quick scope violating query). Let us look at these

6.10. QUERY PROCESSING WITH VIRTUAL NODES 113

L ... Local Query
M ... Merge Query

Q ... User Query

N ... Neighbor Query

SEND

M

U

L ... RECEIVEk

N

RECEIVE1

N

A

U ... Unionizer Operator

A ... Agent Plan

Figure 6.13: Template Execution Plan.

three strategies in more detail.

Normal Query Execution. Clearly a container can answer a query like any normal
node via the execution plans proposed in Section 6.5. Recall the template execution plan,
as depicted in Figure 6.13, and the specific plans for queries that are either recursively
partitionable or not. As an optimization, network communication between internal nodes can
be replaced with local loop-back connections, inter-process communication or direct function
calls. For example, the Peer Database Protocol from Chapter 7 is built upon the BEEP
framework. Since BEEP can be mapped to several underlying reliable transport layers (TCP
is merely the default), a container can plug in an in-process transport mapping, yet continue
to use the same messaging code base.

Collecting Traversal. To answer queries, a container can use a strategy we propose
to call collecting traversal. Here the goal is to remove the need for any internal messaging
and to run as few as possible queries against the database of shared nodes. To ensure that
query semantics are fully preserved, the fact is exploited that queries in our query model are
defined over a single virtual set of tuples (service descriptions), as discussed in Section 3.2.
The query model allows generating this set of tuples in any arbitrary way.

The strategy works as follows. When a container node receives an external query, it takes
over the work for the other internal nodes. In the first phase, it collects preparatory data.
In the second phase, the query is executed. The first phase collects the internal and external
nodes that are reachable from the start node. In other words, one traverses the container
from the given start node, following the path that the query would touch. Along the way,
the (keys of) internal nodes and external nodes are collected.

Consider the example from Figure 6.14. The keys of the six internal nodes are (2,3,4,
5,7,8) whereas the keys of the three external nodes are (1,6,9). The originator sends
a query to the start node B. The node has a database of tuples(B)={1,3,4}. The in-
ternal nodes reachable from B are internal(B)={3,4,2,5}, and the reachable external
nodes are external(B)={1,6}. The tuples contained in the internally reachable nodes are
tuples(internal(B)) = UNION (tuples(3), tuples(4), tuples(2), tuples(5)) = {1,

114 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

B(2)

D(4)C(3)

E(5)

F(6)

H(8)

I(9)

A(1)

G(7)

Container

Internal(B)={C,D,B,E}
External(B)={A,F}

Internal={B,C,D,E,G,H}
External={A,F,I}

Figure 6.14: Node Containers.

2,3,4,5,6}.
According to query type, the node chooses a central or recursively partitionable execution

plan, and executes it (see Section 6.5). However, the local query L is executed against the
tuples of the internally reachable nodes tuples(internal(B)) rather than against the tuples
of the database tuples(B). Similarly, the plan forwards the query to the nodes external(B)
rather than to the neighbors obtained from B’s neighbor selection. Scope semantics are
preserved by explicitly applying the relevant rules of scope parameters during node traversal
(e.g. radius pruning and neighbor selection).

The net effect is that the local query L and the merge query M are batched. That is, they
are applied once over a large set, instead of many times over a small set. The nodes of a
container are stored in a single database (table), for example as depicted in Table 6.3. The
table is not normalized for clarity of exposition. Collecting nodes is particularly fast if the
neighbor selection policy is simple and the database fits into main-memory. For example,
it is certainly possible to have a data structure that allows quickly traversing the database
table. Further, internal messaging overhead is eliminated altogether. To summarize, if the
neighbor selection policy is applied at each node, and scope parameters such as radius are
observed, one can emulate normal query execution, but in a way that is more efficient.

Node ID Service Description Is external? Tuples

1 A True null

2 B False 3, 4

3 C False 2, 5

4 D False 2, 5

5 E False 3, 4, 6

6 F True null

Table 6.3: Node Table of Container.

Recall the problem of greedy radius pruning from Section 6.8. Traversal of internal nodes

6.11. RELATED WORK 115

via depth-first search is inappropriate because it leads to greedy radius pruning with high
probability, in particular if a container holds a large number of nodes with a complex internal
topology. In practice, this means that even though a user may have specified a theoretically
large enough logical radius, it is unlikely that an incoming query will ever forward beyond
the current container. It is in the nature of depth-first search that it is unlikely that an
external link is reached along a short internal route. Rather, it is likely that it is reached
along one of the longest possible internal routes. Within a container, greedy pruning can
be eliminated by traversal using breadth-first search. This ensures that the shortest path
to external links is always found, despite loop detection pruning. Put another way, loop
detection is conditioned to prune only paths longer than the shortest path. The net effect
is that external nodes receive a meaningful logical radius scope parameter on query forward.
The pseudo-code in Figure 6.15 computes the internal and external nodes of a given entry
node, using breadth-first search.

Quick Scope Violating Query. Normal query execution and collecting traversal preserve
query and scope semantics. If no query scope is given, or if it is acceptable to ignore or alter
scope semantics, query execution can be optimized further using the strong technologies of
centralized (relational) database architectures. For example, internal graph traversal can be
eliminated altogether. The strategy works as follows. According to query type, the node
chooses a central or recursively partitionable execution plan, and executes it (see Section
6.5). However, the local query L is executed against the union of all tuples of the container
(1-9) rather than against B’s database tuples(B). Similarly, the plan forwards the query
to the external nodes selected from the union of all external nodes of the container (1,6,9)
rather than to the immediate neighbors of B.

The net effect is that the local query L and the merge query M are batched. That is,
they are applied once over a large set, instead of many times over a small set. The same
holds for neighbor selection. Determining all tuples of the container requires no time at all
because they are, of course, stored in the same database (table). Computing all external
nodes is cheap as well. Scope-violating queries are answered using the strong technologies of
centralized (relational) database architectures. Consequently, they are highly efficient, at the
expense of ignoring or altering scope semantics.

For example, nodes (7,8,9) should never be considered, as they are not directly or
indirectly connected to B. Further, it is unclear what logical radius should be assigned on
query forward to external nodes. Computing the correct logical radius would essentially
degrade performance down to the performance of collecting traversal. It appears that the
least bad choice is to decrease the logical radius by one on external forward. Note that query
semantics are still preserved. The query is just fed a larger than necessary set of tuples
(service descriptions). In practice, this may be tolerable for a significant fraction of use cases.

6.11 Related Work

Agent P2P Model. The underlying idea of the Agent P2P model is not new. Consider for
example, the email infrastructure model [33]. Typically, a single central high availability agent

116 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

/**

* do:

* at each depth level:

* for each node of level:

* remove node from TODO list

* add tuples of node to INTERNAL or EXTERNAL sets

* append selected neighbors to TODO if not already done (loop)

* until all nodes visited or radius limit reached

* return INTERNAL and EXTERNAL

* (also compute max. logicalRadius that should be used on forward to external nodes)

*/

FUNCTION collectingTraversal(startNode, logicalRadius) {

internal = {}, external = {}, done = {}, todo = {startNode}

while (size=size(todo)) > 0 and logicalRadius >= 0

logicalRadius = logicalRadius - 1

for i := 1 to size

node = first element of todo

remove first element from todo

done = done UNION {node}

internal = internal UNION tuples(node)

if logicalRadius >= 0 then

for each neighbor n IN select(neighbors(node))

if n is internal && not contained in todo && not contained in done then

Append n to todo

endif

if n is external && not (n,any radius) contained in external then

external = external UNION {(n, logicalRadius)}

endif

endfor

endif

endfor

endwhile

Return (internal, external)

}

Figure 6.15: Collecting Traversal.

6.11. RELATED WORK 117

serves outgoing and incoming mail for originators from an entire organization. However, an
email system can also be fully (or partly) decentralized such that each originator runs its own
agent on its own host. This transparent flexibility contributes to the widespread adoption
and tremendous success of email as an Internet “killer application”. A similar example is the
X.500 [13] directory architecture, which has a Directory User Agent (originator) querying a
Home Directory System Agent (agent node), which is one of a collection of Directory System
Agents (nodes).

Loop Detection. The X.500 protocol [13] uses a route-tracing algorithm for loop detection.
This algorithm only works for queries that select on a name from a hierarchical name space
that is mimicked by the link topology. In our general context, the algorithm is insufficient for
loop detection because we allow, but do not assume, such a topology and namespace. The
route-tracing algorithm attaches to a query the route already taken, represented by a list
of node identifiers. On query forward, a node N appends its own identifier to the route. A
loop is detected if the identifier of the current node N is already contained in the route. This
mechanism only detects a loop if a query forwarded by a given node N eventually arrives
again at the same node N. It cannot detect the more common form of loop where the same
query arrives along multiple paths at a given node N, but none of the paths have so far
touched N.

Query Processing. None of the example discovery queries from Section 3.4 can be
satisfied with a lookup by key (e.g. globally unique name). This is the type of query assumed
in most P2P systems such as DNS [20], Gnutella [21], Freenet [22], Tapestry [23], Chord [24]
and Globe [25], leading to highly specialized content-addressable networks centered around
the theme of distributed hash table lookup. Note further that almost no queries are exact
match queries (i.e. given a flat set of attribute values find all tuples that carry exactly the
same attribute values), assumed in systems such as SDS [26] and Jini [63]. Our approach is
distinguished in that it not only supports all of the above query types, but it also supports
queries from the rich and expressive general-purpose query languages XQuery [18] and SQL
[19].

Pipelining. For a survey of adaptive query processing, including pipelining, see the special
issue of [102]. [103] develops a general framework for producing partial results for queries
involving any non-monotonic operator. The approach inserts update and delete directives
into the output stream. The Tukwila [104] and Niagara projects [105] introduce data integra-
tion systems with adaptive query processing and XML query operator implementations that
efficiently support pipelining. Pipelining of hash joins is discussed in [106, 107, 108]. [109]
proposes a rate based pipeline scheduling algorithm that prioritizes and schedules the flow of
data between pipelined operators so that the result output rate is maximized. The algorithm
is also demonstrated with pipelined hash joins. Pipelining is sometimes also termed streaming
or non-blocking execution.

118 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

Neighbor Selection. Iterative deepening [27] is a similar technique to expanding ring
where an optimization is suggested that avoids reevaluating the query at nodes that have
already done so in previous iterations.

Neighbor selection policies that are based on randomness and/or historical information
about the result set size of prior queries are simulated and analyzed in [28].

An efficient neighbor selection policy is applicable to simple queries posed to networks
in which the number of links of nodes exhibits a power law distribution (e.g. Freenet and
Gnutella) [29]. Here most (but not all) matching results can be reached with few hops by
selecting just a very small subset of neighbors (the neighbors that themselves have the most
neighbors to the n-th radius). Note, however, that the policy is based on the assumption
that not all results must be found and that all query results are equally relevant. Depending
on the application context, this assumption may or may not be valid.

These related works discuss in isolation neighbor selection techniques for a particular
query type, without the context of a framework for comprehensive query support.

DNS. Distributed databases with a hierarchical name space such as the Domain Name
System (DNS) [20] can efficiently answer queries of the form “Find an object by its full
name”. For example, the DNS can search for the IP address (e.g. 137.138.29.51) of a
given domain name (e.g. fred.cms.cern.ch). Because of the nature of the supported query
type, these systems arrange the link topology, according to the hierarchical name space, as
a tree topology, as depicted in Figure 6.16. Each node (DNS server) is responsible for tuples
from a name space sub-tree such as ch, cern.ch or cms.cern.ch. A node may internally
partition its name space and delegate responsibility for sub-trees to child nodes. A node
holds a database of tuples, each of which carries a domain name and an IP address.

fred f g

cms
d

cern

ch

fire

ethz

<root>

fire.ethz.ch

fred.cms.cern.ch

IP(fred.cms.cern.ch) = ?
--> 137.138.29.51

referred query
forwarded query

Figure 6.16: Query Flow in Domain Name System (DNS).

A query searching for the IP address of a domain name traverses the tree on the shortest
path from originator (e.g. fire.ethz.ch) to the node containing the domain name - first
up, then down. At each node, a name resolution policy selects the neighbor “closer” to the
name than the current node, according to name space metadata. In DNS, queries are not
forwarded (routed) through the topology. Instead, a node returns a referral message that
redirects an originator to the next closer node. The originator explicitly queries the next
node, is referred to yet another closer node, and so on. Nodes cache the IP address (service
link result) of recently queried nodes. A cache hit directly refers a client to the responsible

6.12. SUMMARY 119

node. This dramatically reduces load on nodes close to the root of the hierarchy. It also
reduces the number of round trips involved for a query.

To support neighbor selection in a hierarchical name space within our UPDF framework,
a node could publish to its neighbors not only its service link, but also the name space it
manages. A natural candidate for the hierarchical name is the content link of a tuple. The
DNS referral behavior can be implemented within UPDF by using a radius scope of zero.
The same holds for the LDAP referral behavior (see below).

X.500, LDAP and MDS. The hierarchical distributed X.500 directory [13] works simi-
larly to the DNS. It also supports referrals, but in addition can forward queries through the
topology (chaining in X.500 terminology). The query language is simple (see Sections 3.4
and 3.6). Route tracing is used as a loop detection algorithm. Query scope specification can
support maximum result set size limiting. It does not support radius and dynamic abort
timeout as well as pipelined query execution across nodes. LDAP [14] is a simplified subset
of X.500. Like DNS, it supports referrals but not query forwarding. MDS [15, 16] inherits all
properties of LDAP. MDS additionally implements a simple form of query forwarding that
allows for multi-level hierarchies but not for arbitrary topologies. Here neighbor selection
forwards the query to LDAP servers overlapping with the query name space. The query
is forwarded “as is”, without loop detection8. Further, MDS does not support radius and
dynamic abort timeout, pipelined query execution across nodes as well as direct response and
metadata responses.

6.12 Summary

Comparison with Related Work. We take the first steps towards unifying the fields of
database management systems and P2P computing, which so far have received considerable,
but separate, attention. We extend database concepts and practice to cover P2P search.
Similarly, we extend P2P concepts and practice to support powerful general-purpose query
languages such as XQuery and SQL. As a result, we propose the so-called Unified Peer-to-
Peer Database Framework (UPDF) for general-purpose query support in large heterogeneous
distributed systems spanning many administrative domains. UPDF is unified in the sense
that it allows to express specific applications for a wide range of data types, node topologies,
query languages, query response modes, neighbor selection policies, pipelining characteristics,
timeout and other scope options. The uniformity, wide applicability and reusability of our
approach distinguish it from related work, which individually addresses some but not all
problem areas.

Traditional distributed systems assume a particular type of topology (e.g. hierarchical as
in DNS, LDAP). Existing P2P systems are built for a single application and data type and do
not support queries from a general-purpose query language. For example, Gnutella, Freenet,
Tapestry, Chord, Globe and DNS only support lookup by key (e.g. globally unique name).

8The message id which is part of every LDAP message would be unsuitable for such a purpose because
an LDAP message id is not required to be universally unique. It is merely required to be different from the
values of any other requests outstanding in the same (local) LDAP session of which the message is a part.

120 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

Others such as SDS, LDAP and MDS support simple special-purpose query languages, lead-
ing to special-purpose solutions unsuitable for multi-purpose service and resource discovery
in large heterogeneous distributed systems spanning many administrative domains. [29] dis-
cusses in isolation neighbor selection techniques for a particular query type, without the
context of a framework for comprehensive query support. LDAP and MDS do not support
essential features for P2P systems such as reliable loop detection, non-hierarchical topolo-
gies, dynamic abort timeout, query pipelining across nodes as well as radius scoping. None
introduce a unified P2P database framework for general-purpose query support.

Concepts and Definitions. The related but orthogonal concepts of (logical) link topol-
ogy and (physical) node deployment model are established. A link topology describes the
link structure among nodes, but it does not describe where and how the link information is
stored and accessed. This is defined by a node deployment model, which defines where and
how one or more partitions of the graph are running, stored and accessed.

Definitions are established, clarifying the notion of node, service, fat, thin and ultra-thin
P2P networks, as well as the commonality of a P2P network and a P2P network for service
discovery. A service exposes some functionality via interfaces to remote clients. A node is a
service that exposes at least interfaces for publication and P2P queries. In a fat P2P network,
most services are not nodes. In a thin or ultra thin P2P network, most or all services are
nodes, respectively. In any kind of P2P network, nodes may publish themselves to other
nodes, thereby forming a topology. In a P2P network for service discovery, services and other
content providers may publish their service link and content links to nodes. Because nodes
are services, also nodes may publish their service link (and content links) to other nodes,
thereby forming a topology. In any kind of P2P network, a node has a database or some kind
of data source against which queries are applied. In a P2P network for service discovery, this
database happens to be the publication database.

Agent P2P Model. The agent and servent P2P models are compared. The agent
P2P model allows fully decentralized infrastructures, yet also allows seamless integration
of centralized client-server computing into an otherwise decentralized infrastructure. The
servent P2P model is decentralized, and it does not allow for some degree of centralization.

Loop Detection. To reliably detect and prevent query loops, an originator attaches a
different transaction identifier to each query, which is a universally unique identifier. The
transaction identifier always remains identical during query forwarding over hops. A node
maintains a state table of recent transaction identifiers and returns an error whenever a query
is received that has already been seen.

Response Modes. Four techniques to return matching query results to an originator
are characterized, namely Routed Response, Direct Response, Routed Metadata Response,
and Direct Metadata Response. Under Routed Response, results are fanned back into the
originator along the paths on which the query flowed outwards. Each (passive) node returns
to its (active) client not only its own local results but also all remote results it receives from

6.12. SUMMARY 121

neighbors. Under Direct Response, results are not returned by routing through intermediary
nodes. Each (active) node that has local results sends them directly to the (passive) agent,
which combines and hands them back to the originator. Interaction consists of two phases
under Routed Metadata Response and Direct Metadata Response. In the first phase, routed
responses or direct responses are used. However, nodes return only small metadata results.
In the second phase, the originator selects which data results are relevant. The originator
directly connects to the relevant data sources and asks for data results. The properties of the
various response models are compared with respect to distribution and location transparency,
efficiency of query support, economics, number of TCP connections at originator and agent,
latency, caching and trust delegation to unknown parties.

Query Processing. From the perspective of query processing, a P2P database system
has the same properties as a distributed database system, in a recursive structure. In a
distributed database system, there exists a single local database and zero or more neighbors.
A classic centralized database system is a special case where there exists a single local database
and zero neighbors. Hence, we propose to organize the P2P query engine like a general
distributed query engine. Any query against any kind of database system can be answered
within the proposed framework. A P2P network can be efficient in answering queries that are
recursively partitionable. A query is recursively partitionable if the very same execution plan
can be recursively applied at every node in the P2P topology. The recursive parallel spread
of load implied by a recursively partitionable query is the basis of the much-cited massive
P2P scalability potential. The definition of simple, medium and complex queries is clarified.
A query is simple if it is recursively partitionable using the UNION operator for unionizing
and the IDENTITY operator for merging. A query is a medium query if it is not simple, but
it is recursively partitionable. A query is complex if it is not recursively partitionable.

Pipelining. Often an originator would be happy to already do useful work with one or a
few early tuple results, as long as they arrive quickly and reliably. Results that arrive later
can be handled later, or are ignored anyway. The semantics of certain operators allows them
to support pipelining, while others do not. Whether an agent exhibits a short or long latency
to deliver to the originator the first result from the result set depends on the query operators
in use, which in turn depend on the given query. In other words, for some query types the
originator has the potential to immediately start piping in results (at moderate performance
rate), while for other query types it must wait for a long time until the first result becomes
available (the full result set arrives almost at once, however). Simple queries do support
pipelining. Medium queries may or may not support pipelining, whereas complex queries
typically do not support pipelining.

Static Loop Timeout and Dynamic Abort Timeout. Clearly there comes a time
when a user is no longer interested in query results, no matter whether any more results
might be available. The query roaming the network and its response traffic should fade
away after some time. The value of a static timeout remains unchanged across hops. In
contrast, it is intended that the value of a dynamic timeout be decreased at each hop. Nodes

122 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

further away from the originator may time out earlier than nodes closer to the originator.
Non-pipelined delivery with a static abort timeout is highly unreliable due to the so-called
simultaneous abort timeout problem. To address the problem, we propose dynamic abort
timeouts using as policy exponential decay with halving. This ensures that a maximum of
results can be delivered reliably within the time frame desired by a user. A dynamic timeout
is unsuitable to be used as loop timeout, due to the non-simultaneous loop timeout problem.
A loop timeout must be static.

Query Scope. A query scope is used to navigate and prune the link topology and filter
on attributes of the deployment model. Conceptually, the scope is the input fed to the query.
One can indirectly specify a scope based on neighbor selection, timeout, radius and result
set properties. A node forwards a query to the set of nodes obtained from neighbor selection.
The best neighbor selection policy to adopt depends on the context of the query and the
topology. For example, a query may only select neighbors that meet minimum requirements
in terms of latency and bandwidth. Using neighbor selection explicit topology characteristics
can be exploited in query guidance. For flexibility and expressiveness, we propose to allow
the user to specify the selection policy. In addition to the normal query, the user defines a
neighbor selection query (XQuery) that takes the tuple set of the current node as input and
returns a subset that indicates the nodes selected for forwarding. A wide range of policies
can be implemented in this manner. The neighbor selection policy can draw from the rich
set of information contained in the tuples published to the node. The radius of a query is the
maximum number of hops a query is allowed to travel on any given path. The radius can be
used to indirectly limit result set size. In addition, it helps to limit latency and bandwidth
consumption and to guard against runaway queries with infinite lifetime. Loop detection and
unpredictable timing in distributed systems can lead to greedy radius pruning.

Containers for Centralized Virtual Node Hosting. Link topology and node deploy-
ment are distinct and orthogonal concepts, and hence a node deployment model need not
correspond to a link topology at all. The simplest (and most common) deployment model
has distinct nodes running on distinct hosts. A node container is a transparent software-
hosting environment that embeds one or more nodes. The set of all nodes in the universe is
partitioned over one or more node containers. A container can be a special-purpose program
that behaves as if it were a network of nodes (virtual hosting). A well-known example for
virtual hosting is web serving. Hosted nodes still appear and behave like any other node. In
our case, this means that a hosted node has a service link and description, and it supports
publication, queries, etc. via the operations and network protocols advertised by the service
description. Node deployment models range from centralized to fully distributed. Virtual
hosting has the potential for increased performance (as opposed to increased scalability). For
example, consider a network with millions of small registry nodes spread all over the world,
each holding just some ten tuples. Perhaps searching would be much more efficient if the
nodes and their databases were just partitioned across a few, say a hundred, powerful node
containers.

Internal links connect nodes within a container. External links connect internal with
external nodes. The separate scope parameters logical radius and physical radius are dis-

6.12. SUMMARY 123

tinguished. A query to a container node can be efficiently answered without violating the
semantics of query and scope (normal query execution, collecting traversal). Even more ef-
ficiently, it can be answered by relaxing the conditions imposed by the query scope (quick
scope violating query).

The goal of collecting traversal is to remove the need for any internal messaging and to
run as few as possible queries against the database of shared nodes. To ensure that query
semantics are fully preserved, the fact is exploited that queries in our query model are defined
over a single virtual set of tuples. The query model allows generating this set of tuples in
any arbitrary way. The first phase collects the internal and external nodes that are reachable
from the start node. The local query is executed against the tuples of the internally reachable
nodes. The query is forwarded to the reachable external nodes. Scope semantics are preserved
by explicitly applying the relevant rules of scope parameters during node traversal. Traversal
of internal nodes via depth-first search is inappropriate because it leads to greedy radius
pruning with high probability. Breadth-first search should be used instead.

If no query scope is given, or if it is acceptable to ignore or alter scope semantics, a query
can be answered with the quick scope violating query strategy, using the strong technologies
of centralized (relational) database architectures. Internal graph traversal is eliminated al-
together. The local query, the merge query and neighbor selection are applied once over a
large set, instead of many times over a small set.

124 CHAPTER 6. A UNIFIED PEER-TO-PEER DATABASE FRAMEWORK

Chapter 7

A Unified Peer-to-Peer Database Protocol

7.1 Introduction

Recall that Chapter 4 designed the hyper registry, which is a centralized database (node,
peer) for discovery of dynamic distributed content. Section 5.2 formulated the corresponding
XQuery interface. Chapter 6 devised the Unified Peer-to-Peer Database Framework (UPDF)
that is unified in the sense that it allows to express specific applications for a wide range
of data types, node topologies, query languages, query response modes, neighbor selection
policies, pipelining characteristics, timeout and other scope options. In this chapter, we
propose a messaging model and network protocol that supports the UPDF framework, the
hyper registry and the XQuery interface.

The design of a messaging model and network protocol for large distributed systems
strongly influences system properties such as scalability, efficiency, interoperability, extensi-
bility, reliability, and, of course, limitations in applicability. For example, if the messaging
model does not support pipelining, a result set has to be delivered with long latency in a
single large batch, even though the query type might allow for pipelining. Clearly this may
render a system inappropriate for some interactive or quasi real-time applications. The key
problem is:

• What messaging and communication model as well as network protocol uniformly sup-
ports P2P database queries for a wide range of database architectures and response
models such that the stringent demands of ubiquitous Internet discovery infrastructures
in terms of scalability, efficiency, interoperability, extensibility and reliability can be
met? In particular, how can one allow for high concurrency, low latency as well as
early and/or partial result set retrieval? How can one encourage resource consumption
and flow control on a per query basis?

In this chapter, these problems are addressed by developing a suitable messaging, com-
munication and network protocol model, collectively termed Peer Database Protocol (PDP).
PDP has a number of key properties. It is applicable to any node topology (e.g. central-
ized, distributed or P2P) and to multiple P2P response modes (routed response and direct
response, both with and without metadata modes). To support loosely coupled autonomous
Internet infrastructures, the model is connection-oriented (ordered, reliable, congestion sensi-
tive) and message-oriented (loosely coupled, operating on structured data). For efficiency, it
is stateful at the protocol level, with a transaction consisting of one or more discrete message

126 CHAPTER 7. A UNIFIED PEER-TO-PEER DATABASE PROTOCOL

exchanges related to the same query. It allows for low latency, pipelining, early and/or partial
result set retrieval due to synchronous pull, and result set delivery in one or more variable
sized batches. It is efficient, due to asynchronous push with delivery of multiple results per
batch. It provides resource consumption and flow control and on a per query basis, due to
the use of a distinct channel per transaction. It is scalable, due to application multiplexing,
which allows for very high query concurrency and very low latency, even in the presence of
secure TCP connections. To encourage interoperability and extensibility it is fully based
on Internet Engineering Task Force (IETF) standards, for example in terms of asynchrony,
encoding, framing, authentication, privacy and reporting. We believe that the Peer Database
Protocol is suitable to meet the stringent demands of ubiquitous Internet infrastructures.

Starting from high-level, the model is developed in increasing levels of detail. Message
types and their semantics are introduced and specified in detail. State transitions related to
message handling are specified. Message representations, communication model and network
protocol are specified. The minimum state information a node must maintain for correct
operation is introduced.

7.2 Originator and Node

Recall from Section 6.2 that in the agent P2P model an originator hands a query to an agent
node, which applies the query to its local database and also forwards the query to its neighbor
nodes. To be able to query each other, all nodes must support the same protocol P. From the
functional perspective, there is no difference between an originator querying an agent, and a
node querying another node. Consequently, the protocol P can also be used by an originator
to query an agent.

However, the relationship between originator and agent may take any form. For example,
an originator may embed its agent in the same process. The originator may just as well
choose a remote node as agent, for reasons including central control, reliability, continuous
availability, maintainability, security, accounting and firewall restrictions on incoming con-
nections for originator hosts. A simple HTML GUI may be sufficient to originate queries
that are sent to an organization’s agent node. For flexibility, we do not mandate any par-
ticular communication protocol between originator and agent. A node is free to implement
any number of additional protocols for communication with originators and offer them via
additional service interfaces.

For example, it may implement a simple and straightforward HTTP based query protocol
for web browser based originators. This way, originators have the option to alternatively use
a simpler mechanism than the (non-trivial) protocol P. Consequently, one may, but need not,
distinguish communication protocols between a) originator and agent node and b) between
nodes. In the remainder of this chapter, no such distinction is made. We assume for simplicity
that, if originators are remote, they also speak the protocol P - the Peer Database Protocol.

7.3. HIGH-LEVEL MESSAGING MODEL 127

7.3 High-Level Messaging Model

The high-level messaging model employs four request messages (QUERY, RECEIVE, IN-
VITE, CLOSE) and a response message (SEND). A transaction is a sequence of one or
more message exchanges between two peers (nodes) for a given query. An example trans-
action is a QUERY-RECEIVE-SEND-RECEIVE-SEND-CLOSE sequence1. This non-trivial
transaction model is in contrast to a simpler model where a transaction consists of a single
request-response exchange (e.g. HTTP). The former model is stateful whereas the latter is
stateless. A peer can concurrently handle multiple independent transactions. A transaction
is identified by a transaction identifier. Every message of a given transaction carries the same
transaction identifier. The messages have the following semantics:

• QUERY. A QUERY message is forwarded along hops through the topology. The
message contains the query itself as well as a universally unique transaction identifier
(UUID) for the query (see Section 6.3). Every other message below refers to a prior
QUERY message by carrying the same transaction identifier. The QUERY message also
contains scope hints. It may optionally also contain a hint indicating what response
mode should be used (routed or direct). Under direct response, also the service link
or description of the agent must be included, so that nodes with matches can invite
the agent to retrieve the result set. Optionally, the identity of the originator may
be included to allow for authorization decisions where applicable. A node accepting
a QUERY message returns immediately without any results. Results are explicitly
requested via a subsequent RECEIVE message.

• RECEIVE. A RECEIVE message is used by a client to request query results from
another node. It requests the node to SEND a batch of at least N and at most M results
from the (remainder of the) result set. This corresponds to the next() method of an
iterator (operator). We have 1 ≤ N ≤ M. For example, a low latency use case can use
N=1, M=10 to indicate that at least one and at most ten results should be delivered by
the next batch. N=M=infinity indicates that all remaining results should be send in a
single large batch.

• SEND. When a node accepts a RECEIVE message, it responds with a SEND mes-
sage, containing a batch with the requested results from the (remainder of the) result
set. A client can successively issue multiple RECEIVE messages until the result set is
exhausted. A client need not retrieve all results from the entire result set. For example,
after the first batch of 10 results it may issue a CLOSE request.

• CLOSE. A client may issue a CLOSE request to inform a node that the remaining
results (if any) are no longer needed and can safely be discarded.

• INVITE. INVITE messages only apply to direct response mode. A node forwards the
query without ever waiting for remote result sets. It only applies the query to its local

1This notion is entirely unrelated to the notion used in database systems where a transaction is an atomic
unit of database access which is either completely executed or not executed at all [93].

128 CHAPTER 7. A UNIFIED PEER-TO-PEER DATABASE PROTOCOL

database. If the local result set is not empty, the node directly contacts the agent with
an INVITE message to solicit a RECEIVE message. Interaction then proceeds with
the normal RECEIVE-SEND-CLOSE pattern, either in a synchronous or asynchronous
manner (see below).

• Synchronous (pull) vs. asynchronous (push) RECEIVE. A RECEIVE re-
quest contains a parameter that asks to deliver SEND messages in either synchronous
(pull) or asynchronous (push) mode. In synchronous mode a single RECEIVE request
must precede every single SEND response. An example sequence is RECEIVE-SEND-
RECEIVE-SEND. In asynchronous mode a single RECEIVE request asks for a sequence
of successive SEND responses. A client need not explicitly request more results, as they
are automatically pushed in a sequence of zero or more SENDs. An example sequence
is RECEIVE-SEND-SEND-SEND.

As a practical example, assume a query that yields 100 results, and an originator that
consumes a batch of N=M=50 results per SEND. The messaging model is exemplified by the
corresponding message flows from client to server (“-->”) and back (“<--”) depicted in Table
7.1.

Routed Synchronous
Response

Routed Asyn-
chronous Response

Direct Synchronous
Response

Direct Asynchronous
Response

--> QUERY

--> RECEIVE

<-- SEND

--> RECEIVE

<-- SEND

--> CLOSE

--> QUERY

--> RECEIVE

<-- SEND

<-- SEND

--> CLOSE

--> QUERY

<-- INVITE

--> RECEIVE

<-- SEND

--> RECEIVE

<-- SEND

--> CLOSE

--> QUERY

<-- INVITE

--> RECEIVE

<-- SEND

<-- SEND

--> CLOSE

Table 7.1: High-Level Message Flow.

Concerning the number of results, the detailed semantics of SEND and INVITE remain
to be specified. Further, propagation semantics of CLOSE need to be stated. The revised
specifications read as follows:

• SEND. When a node accepts a RECEIVE message, it responds with a SEND message,
containing a batch with P results from the (remainder of the) result set. A client can
successively issue multiple RECEIVE messages until the result set is exhausted. A
client need not retrieve all results from the entire result set. For example, after the first
batch of 10 results it may issue a CLOSE request. We have P ≤ M. We may, but need
not, have N ≤ P. For example, less than N results may be delivered when the entire
query result set is exhausted, or if the node decides to override and decrease N (e.g. for
reasons including resource consumption control).

7.3. HIGH-LEVEL MESSAGING MODEL 129

A SEND message also contains the number R of remaining results currently available for
immediate non-blocking delivery with the next SENDs (nonBlockingResultsAvailable).
Usually R is greater than zero. R=0 can indicate that remote nodes have not yet de-
livered results necessary to return more than zero results with the next SEND. R=-1
indicates that the batch contains the last results as the result set is exhausted. No more
RECEIVE messages must be issued after that point. R=-2 indicates that the number
is unknown.

A SEND message also contains the current estimate Q of the remaining total result set
size, irrespective of blocking (estimatedResultsAvailable). The actual number of
results that can (later) be delivered may be larger. It should not be smaller, except if
other nodes fail to deliver their suggested results. Usually Q is greater or equal to zero.
R=-1 implies Q=-1, indicating that the result set is definitely exhausted. Q=-2 indicates
that the number is unknown.

In synchronous mode a single RECEIVE request must precede every single SEND re-
sponse. In asynchronous mode a single RECEIVE request asks for a sequence of succes-
sive SEND responses, each of which contains a batch with P results from the (remainder
of the) result set.

• INVITE. Under direct response, a node forwards the query without ever waiting for
remote result sets. It only applies the query to its local database. If the local result set
is not empty, the node directly contacts the agent with an INVITE message to solicit
a RECEIVE message. Interaction then proceeds with the normal RECEIVE-SEND-
CLOSE pattern, either in a synchronous or asynchronous manner. An INVITE message
also contains the number R of results currently available for immediate non-blocking
delivery (nonBlockingResultsAvailable). R must be greater or equal to zero. The
message also contains the current estimate Q of the remaining total result set size,
irrespective of blocking (estimatedResultsAvailable). Q must be greater than zero.

• CLOSE. A client may issue a CLOSE message to inform a node that the remaining
results (if any) are no longer needed and can safely be discarded. A CLOSE message
responds immediately with an acknowledgement. At the same time, the node asyn-
chronously forwards the CLOSE to neighbors involved in result set delivery, which in
turn forward the CLOSE to their neighbors, and so on. Being informed of a CLOSE
allows a node to release resources as early as possible. Strictly speaking, a client need
not issue a CLOSE, and a node need not forward further a CLOSE, because a query
eventually times out anyway. Even though this is considered misbehavior, a node must
continue to operate reliably under such conditions.

A node may periodically discover other peers and announce its presence. Node discovery
uses a QUERY that selects all tuples with node service descriptions. For presence announce-
ment, a node additionally includes its service description as optional QUERY data. Explicit
PING/PONG messages as used in Gnutella [21] are unnecessary.

Clearly a RECEIVE request may cause cascading RECEIVEs through the P2P node
topology, followed by cascading SEND responses backwards. In the worst case every RE-
CEIVE cascades through a large number of node hops, incurring prohibitive latencies. This

130 CHAPTER 7. A UNIFIED PEER-TO-PEER DATABASE PROTOCOL

highlights the importance of (appropriately sized) batched delivery, which greatly reduces the
number of hops incurred by a single RECEIVE. Also, note that the I/O of a node need not
be driven strictly by client demand. For example, in an attempt to reduce latency, a node
accepting a QUERY may already prefetch query results from its neighbors even though it
has not yet seen the corresponding RECEIVE request from its client.

State Transitions. A node maintains a state table. For each query at least the transaction
identifier (abbreviated tid), abort timeout, loop timeout and an open/closed state flag are
kept. An example state table reads as follows:

Tid Abort Timeout Loop Timeout State

100 20 30 Closed

200 50 60 Open

A query is known to a node if the state table already holds a transaction identifier equal
to the transaction identifier of the query. Otherwise, it is said to be unknown. A known
query can be in two states: open or closed. Let us discuss the state transitions from unknown
to open to closed and back to unknown state.

• Open. When an unknown query arrives with a QUERY message, it moves into open
state. When a query moves into open state, it becomes known and is forwarded to the
neighbors obtained from neighbor selection.

• Closed. A query moves from open into closed state when its abort timeout has been
reached, or if the result set is exhausted by the final SEND, or if a client issues a CLOSE
to indicate that it is no longer interested in the (remainder of the) result set, or if one of
several errors occur. Under direct response, a query also moves from open into closed
state if the query produces no local results, or if it does produce local query results but
the INVITE request is not accepted by the agent.

In any case, when a query moves into closed state, a CLOSE request is asynchronously
forwarded to all dependents in order to inform them as well. A node depends on a
set of other nodes (dependents) that are involved in result set delivery. Under Routed
Response, the dependants are the nodes obtained from neighbor selection. Under Direct
Response, the dependents of an agent are the nodes from which the agent has accepted
an INVITE message, whereas all other nodes have no dependents.

• Unknown. A query moves from closed state into unknown state when its loop timeout
has been reached. In other words, the query is deleted from the state table.

• Message Acceptance and Rejection. A QUERY request is accepted if the query is
unknown. If an already known QUERY arrives, this usually indicates loop detection.
The message is rejected with an error (e.g. ”transaction identifier already in use”).
When a message other than QUERY arrives that has an unknown transaction identifier,
it is rejected with an error (e.g. ”transaction identifier unknown”). RECEIVE, SEND,
CLOSE and INVITE messages are accepted for a query in open state. No message for
a query in closed state is accepted; the response to a message is always an error (e.g.
”transaction identifier already closed”).

7.4. CONCRETE MESSAGES 131

The state transitions are summarized in Figure 7.1.

1. CLOSE received
2. SEND exhausts result set

3. INVITE not accepted (Direct Response non empty resultset)
4. True (Direct Response empty local result set)

5. Various errors
6. Abort timeout

OPEN

UNKNOWN

Loop timeout

Trigger action:
Forward QUERY
to neighbors

CLOSED

QUERY

Trigger action:
Forward CLOSE
to dependents

Figure 7.1: Node State Transitions.

7.4 Concrete Messages

The high-level messaging model proposed so far omits many details. For example, any realis-
tic messaging model must deal with acknowledgment and error messages. In a straightforward
manner, the model is now mapped down to the abstract messaging model of the BEEP ap-
plication level network protocol framework [35, 36]. BEEP is an IETF standard designed for
connection-oriented (ordered, reliable, congestion sensitive), message-oriented (loosely cou-
pled, structured data), asynchronous (peer-to-peer, allowing client-server) communications.
The framework defines one request message class (MSG) and four response messages classes
(RPY, ERR, ANS, NULL). Discrete messages belong to well-defined message exchange pat-
terns. For example, the pattern of synchronous exchanges (one-to-one, pull) is supported as
well as the pattern of asynchronous exchanges (one-to-many, push). The response to a MSG
message may be an error (ERR), a reply (RPY) or a sequence of zero or more answers (ANS),
followed by a null terminator message (NULL). The exchange patterns are summarized as
follows:

MSG --> RPY | (ANS [0..N], NULL) | ERR

The BEEP framework explicitly expects each message class to be extended by applications
as necessary. Accordingly, the messages QUERY, RECEIVE, SEND, CLOSE, INVITE are
refined, yielding three request MSG types (MSG QUERY, MSG RECEIVE, MSG INVITE),
two reply message types (RPY SEND, RPY OK), one answer message type (ANS SEND),
and the ERR error type. The RPY OK and ERR message type are introduced because any
realistic messaging model must deal with acknowledgments and errors. The following message
exchanges are permitted:

MSG QUERY --> RPY OK | ERR

MSG RECEIVE --> RPY SEND | (ANS SEND [0:N], NULL) | ERR

132 CHAPTER 7. A UNIFIED PEER-TO-PEER DATABASE PROTOCOL

MSG INVITE --> RPY OK | ERR

MSG CLOSE --> RPY OK | ERR

Using the refined model, the message flows depicted in Table 7.2 can occur in the running
example.

Routed Synchronous
Response

Routed Asyn-
chronous Response

Direct Synchronous
Response

Direct Asynchronous
Response

--> MSG QUERY

<-- RPY OK

--> MSG RECEIVE

<-- RPY SEND

--> MSG RECEIVE

<-- RPY SEND

--> MSG CLOSE

<-- RPY OK

--> MSG QUERY

<-- RPY OK

--> MSG RECEIVE

<-- ANS SEND

<-- ANS SEND

<-- NULL

--> MSG CLOSE

<-- RPY OK

--> MSG QUERY

<-- RPY OK

<-- MSG INVITE

--> RPY OK

--> MSG RECEIVE

<-- RPY SEND

--> MSG RECEIVE

<-- RPY SEND

--> MSG CLOSE

<-- RPY OK

--> MSG QUERY

<-- RPY OK

<-- MSG INVITE

--> RPY OK

--> MSG RECEIVE

<-- ANS SEND

<-- ANS SEND

<-- NULL

--> MSG CLOSE

<-- RPY OK

Table 7.2: Refined Message Flow.

Message types and their parameters can be mapped to multiple representations. For
simplicity and flexibility, we use straightforward XML [11] representations. Without loss of
generality, example query expressions (e.g. user query, merge query and neighbor selection
query) are given in the XQuery language [18], as detailed in Chapter 6. SQL [19], LDAP [14]
or other query languages could be used as well. Consider the following example messages:

<MSG_QUERY transactionID = "12345">

<query>

<userquery> RETURN /tupleset/tuple </userquery>

<mergequery unionizer="UNION"> RETURN /tupleset/tuple </mergequery>

</query>

<scope loopTimeout = "2000000000000" abortTimeout = "1000000000000"

logicalRadius = "7" physicalRadius = "4"

maxResults = "100" maxResultsBytes = "100000">

<neighborSelectionQuery> <!-- implements broadcasting -->

RETURN /tupleset/tuple[@type="service"

AND content/service/interface[@type="Consumer-1.0"]

AND content/service/interface[@type="XQuery-1.0"]]

</neighborSelectionQuery>

</scope>

<options>

<responseMode> direct </responseMode>

<agent>

<tuple link="http://fred.example.com/getServiceDescription"

type="service" TS1="20" TC="25" TS2="30" TS3="40">

<content>

<service> service description of agent goes here </service>

7.4. CONCRETE MESSAGES 133

</content>

</tuple>

</agent>

<originator> fred@example.com </originator>

</options>

</MSG_QUERY>

<MSG_RECEIVE transactionID = "12345">

<mode minResults = "1" maxResults = "10">

synchronous

</mode>

</MSG_RECEIVE>

<RPY_SEND transactionID = "12345">

<data nonBlockingResultsAvailable = "-1" estimatedResultsAvailable = "-1">

<tupleset TS4="100">

<tuple link="http://sched.infn.it:8080/pub/getServiceDescription"

type="service" ctx="child" TS1="20" TC="25" TS2="30" TS3="40">

<content>

<service> service description B goes here </service>

</content>

</tuple>

<tuple link="http://repcat.cern.ch/pub/getStatistics"

type="repcatStats" TS1="60" TC="65" TS2="70" TS3="80">

<content>

<repcatStats host="repcat.cern.ch" avgHitsPerMin="1000">

<dbsize countLFNs="100000" countPFNs="100000000"/>

</repcatStats>

</content>

</tuple>

</tupleset>

</data>

</RPY_SEND>

<ANS_SEND transactionID = "12345">

structure is identical to RPY_SEND ...

</ANS_SEND>

<MSG_INVITE transactionID = "12345">

<avail nonBlockingResultsAvailable="50" estimatedResultsAvailable="100"/>

</MSG_INVITE>

<MSG_CLOSE transactionID = "12345" code="555"> maximum idle time exceeded

</MSG_CLOSE>

<RPY_OK transactionID = "12345"/>

<ERR transactionID = "12345" code="550"> transaction identifier unknown </ERR>

134 CHAPTER 7. A UNIFIED PEER-TO-PEER DATABASE PROTOCOL

7.5 Communication Model and Network Protocol

The previous sections proposed a messaging model in increasing levels of detail. In this
section, the communications between two peers (e.g. originator and agent node, or node and
another node) are described by a communication model. The model operates on abstract
entities such as sessions, channels, messages and frames. The communication model is later
explicitly mapped down to a network protocol. A network protocol describes how abstract
entities such as sessions and channels map to physical entities such as TCP connections.
Further, a network protocol spells out how to handle asynchrony (handling independent
exchanges), encoding (representing messages), framing (delimiting messages), authentication
(verifying user identities), privacy (protecting against third-party interception) and reporting
(conveying status information such as errors).

Communication Model. We adopt the communication model of BEEP because it well
fits the requirements of our (non-trivial) messaging model. The model has the following
properties.

• Session, Channel, Message and Frame. Two peers establish a session for commu-
nication. Within a session, one or more channels can be established. A channel carries
zero or more messages. A message can have arbitrary length and content. A message
is segmented into one or more frames of variable length. A session is established by an
initiator for communication with a listener. Within a session, the peer that awaits new
channels is acting in the server role, and the other peer, which establishes a channel
to the server, is acting in the client role. In P2P style, both initiator and listener may
(but need not) act as client and server at the same time.

• Intra-channel. Within a channel, all messages are processed in serial order. The
server must generate responses in the same order as corresponding request messages
are received. One or more request messages may be issued without waiting to receive
the corresponding responses. That is, a channel provides pipelining. To this end,
each request message carries an integer identifier that is unique within the channel.
Responses to the message carry the same identifier.

• Inter-channel. Channels are isolated from each other, and therefore handle asyn-
chrony/multiplexing. A channel cannot “see” or interfere with messages from other
channels. There are no constraints on the processing order for different channels. In
other words, inter-channel messages may be unordered.

• Flow control. In all likelihood, the concurrent channels of a session are carried over
the same physical network cable. Consequently, flow control policy issues arise: If more
than one channel offers a frame to send, which frame should be chosen? What is a good
size for a frame? A peer may implement any policy it sees fit. For example, it may
attempt to prevent starvation and encourage fairness. A slow channel should not be
able to monopolize the session. Large messages may be segmented into multiple frames,
and different channels may be served in round-robin fashion or according to priorities.

7.5. COMMUNICATION MODEL AND NETWORK PROTOCOL 135

The larger the system load, the more important is flow control for reliable and pre-
dictable operation. Consider the analogy between P2P nodes and physical IP routers,
which form nodes in a multi hop packet switching network. Obviously it is desirable
to be able to control the Quality of Service policies, I/O scheduling and queues of IP
routers.

Recall that a peer can concurrently handle multiple independent transactions. A trans-
action is a sequence of one or more message exchanges between two peers for a given query.
An example transaction is a QUERY-RECEIVE-SEND-RECEIVE-SEND-CLOSE sequence.
This non-trivial transaction model is in contrast to a simpler model where a transaction
consists of a single request-response exchange. The simple or non-trivial use of transactions
determines the context in which channels are used. In the simple model, it may be appealing
to share a channel for many unrelated transactions. In our non-trivial model, one channel
per distinct transaction is used to isolate communication referring to different queries and to
ensure that messages of a transaction are processed in serial order. This also provides for
resource consumption and flow control on a per query basis.

Let us extend the running example to cover two concurrent interleaved queries Q1 and
Q2. Q1 is dealt with on channel 1, whereas Q2 is dealt with on channel 2. Even though Q1 is
issued before Q2, Q2 is answered earlier, for any of a variety of reasons. Q2 may be simpler
than Q1. Nodes involved in answering Q1 may be busy or down. The bandwidth of network
paths may strongly vary. The flow control policy of a node may degrade the priority of Q1.
In the example, the multiplexed message flows depicted in Table 7.3 can occur (notation
is channelNumber : message). Only routed response modes are shown. Direct response
modes are analogous.

Routed Synchronous Response Routed Asynchronous Response

--> 1: MSG QUERY

<-- 1: RPY OK

--> 2: MSG QUERY

<-- 2: RPY OK

--> 1: MSG RECEIVE

--> 2: MSG RECEIVE

<-- 2: RPY SEND

--> 2: MSG RECEIVE

<-- 2: RPY SEND

--> 2: MSG CLOSE

<-- 1: RPY SEND

<-- 2: RPY OK

--> 1: MSG CLOSE

<-- 1: RPY OK

--> 1: MSG QUERY

<-- 1: RPY OK

--> 2: MSG QUERY

<-- 2: RPY OK

--> 1: MSG RECEIVE

--> 2: MSG RECEIVE

<-- 2: ANS SEND

<-- 1: ANS SEND

<-- 2: ANS SEND

<-- 2: NULL

--> 2: MSG CLOSE

<-- 1: ANS SEND

<-- 2: RPY OK

<-- 1: NULL

--> 1: MSG CLOSE

<-- 1: RPY OK

Table 7.3: Multiplexed Message Flows.

136 CHAPTER 7. A UNIFIED PEER-TO-PEER DATABASE PROTOCOL

Network Protocol. A messaging and communication model does not specify how to han-
dle asynchrony (handling independent exchanges), encoding (representing messages), framing
(delimiting messages), authentication (verifying user identities), privacy (protecting against
third-party interception) and reporting (conveying status information such as errors). In this
section, we specify details on these issues. Further, a communication model does not operate
on physical entities such as TCP connections and packets, but rather on abstract entities
such as sessions, channels, messages and frames. The concepts of session and channel can be
mapped to concrete physical entities in several ways:

• Session. There are two options: one session per originator, or one session per ini-
tiator (neighbor node). Under the former option, a new session between two peers is
established whenever a query from a previously unknown originator is accepted. The
session is shared by all queries from the given originator. This option does not scale well
in the presence of many concurrent originators. In contrast, under the latter option,
a new session is established whenever a new node publishes itself as neighbor (more
lazy: when the first query exchange with a neighbor happens). Irrespective of how
many originators issue queries, the session persists until a node leaves the network.
Since neighbors do not join and leave very frequently, this option involves less latency
because session establishment occurs less often.

• Channel. As has been noted, our model uses one channel per distinct transaction
identifier in order to isolate communications referring to different queries and to ensure
that messages of a transaction are processed in serial order. In other words, there
exists one channel per query. There are two options to map TCP connections: one
TCP connection per channel (TCP multiplexing, TM) and one TCP connection per
session (application multiplexing, AM).

TM is easy to implement because multiplexing is directly supported by the TCP stack,
which natively handles multiple concurrent TCP connections. An application need not
bother how to implement multiplexing and flow control, but it also has few means to
control it. For simplicity, almost all network protocols use TM. Under AM, all channels
of a session share a single TCP connection. Typically, each channel has an associated
memory buffer. AM is much more complex because multiplexing must be supported
on top of the TCP stack, at the application level. Note, however, that the complexi-
ties involved are well taken care of by existing commodity software frameworks such as
beepcore [110]. TM has the distinct disadvantage of being much less efficient in the
presence of high frequency channel creation. With new queries (channels) arriving at
high frequency, TM encounters serious latency limitations due to the very expensive
nature of secure (and even insecure) TCP connection setup. Even if TCP connections
are kept alive, pooled and reused, at least N*neighbors TCP connections are needed
under broadcast to handle N concurrent queries. While this solution may be perfectly
adequate for small special-purpose networks, it clearly does not scale well to the strin-
gent demands of a ubiquitous Internet infrastructure such as service discovery. This is
precisely the demanding scenario AM is designed for: Channel establishment only re-
quires a single message exchange over an already existing TCP connection. If channels

7.5. COMMUNICATION MODEL AND NETWORK PROTOCOL 137

are pooled and reused, channel establishment is a null operation and does not involve
any network communication exchange.

We assume that at any given moment in time, a node faces many queries, fewer originators
and even fewer initiators (neighbors). In a widely deployed system, a node must expect to
face hundreds to many thousands of concurrent queries, hundreds to thousands of concurrent
originators, and tens to hundreds of neighbors. For example, many queries are periodically
reissued with substantial frequency. Many queries are in open state but have long interactive
latencies between consecutive RECEIVE-SEND exchanges. Many queries are in open state
waiting for abort timeout, because client programs tend to be lazy and forget to issue a
CLOSE. Many queries are in closed state waiting for loop timeout.

It appears unnecessary and inefficient to setup up a new session for each originator. Hence,
one session per initiator (neighbor node) is used. For simplicity and easy authorization, we
actually use two sessions per initiator (neighbor node). One session is used for traffic related to
incoming queries (queries posed to the node), the other for traffic related to outgoing queries
(queries the node poses to another node). A node with N neighbors has N incoming and N
outgoing sessions. In a successful P2P network, queries do indeed arrive at high frequencies.
Session establishment may be heavyweight, but channel establishment must be lightweight.
Hence, application multiplexing is chosen. A node with N neighbors has N incoming and N
outgoing TCP connections.

Any network protocol must deal with a set of common problems. The BEEP frame-
work was introduced to avoid the need to reinvent solutions to common problems. BEEP is
an IETF standard designed for connection-oriented (ordered, reliable, congestion sensitive),
message-oriented (loosely coupled, structured data), asynchronous (peer-to-peer, allowing
client-server) communications. We propose to adopt the framework because it integrates
existing best-of-breed standards. BEEP uses channels for asynchrony (handling independent
exchanges). The transport mapping to TCP uses application multiplexing (one TCP connec-
tion per session) with sliding windows [36]. More precisely, each channel has a sliding window
that indicates the number of payload octets that a peer may transmit before receiving fur-
ther permission to transmit. MIME [67] with a default of text/xml is used for encoding
(representing messages). Octet counting with trailers is used for framing (delimiting mes-
sages). SASL [111] or TLS/SSL [112] are used for authentication (verifying user identities)
and privacy (protecting against third-party interception). For Grid applications, TLS/SSL is
used within the context of the Grid Security Infrastructure (GSI) [113]. 3-digit and localized
textual diagnostics are used for reporting (conveying status information such as errors).

We propose to encode message types and their parameters with the straightforward XML
representations given in the previous Section 7.4, using the MIME type text/xml, which is
the default in BEEP.

Finally note that it would be interesting to use SOAP [9] as a high-level tool for PDP mes-
saging. Most commonly, HTTP 1.1 [34] is used as SOAP transport. However, SOAP is trans-
port protocol independent. For strongly increased efficiency and low latency, SOAP should
be carried over BEEP. See [31] for an IETF draft specifying a straightforward SOAP/BEEP
binding.

138 CHAPTER 7. A UNIFIED PEER-TO-PEER DATABASE PROTOCOL

7.6 Node State Table

Let us now discuss the minimum state information a node must maintain for correct operation,
introduced by means of an example. Consider the state of the central grey node depicted in
Figure 7.2. The node has three neighbors (A, B, C). Two concurrent queries Q1 and Q2 are
being handled. Q1 arrives from A and is forwarded to B and C. Q2 also arrives from A, but
neighbor selection dictates that it is forwarded to C only. Q1 uses three channels (1, 2, 3)
whereas Q2 uses two channels (4, 5). The session (a) incoming from A has two channels (1,
4). The session (b) outgoing to B has one channel (2). The session (c) outgoing to C has
two channels (3,5). The sessions outgoing to A and incoming from B and C are not shown,
because they are not used by the two queries. Both queries carry a transaction identifier, or
tid for short: Q1 (tid=100) and Q2 (tid=200).

32

1
5

B C

A

4

Q1: 1,2,3
Q2: 4,5

Channels

Figure 7.2: Example Node State.

For the purpose of exposition, the relational data model is used to describe state. For
each session, a node must maintain at a minimum the following information:

• The channels associated with each session, so that all channels of a given session can
be closed (Table 7.4 - compressed for clarity).

Session (1) Channel (N)

a 1, 4

b 2

c 3, 5

Table 7.4: Channels of Sessions.

For each known query, a node must maintain the following information:

• The channels outgoing to dependents, so that incoming messages such as MSG RE-
CEIVE and MSG CLOSE can be forwarded to dependents (Table 7.5).

Further, for each known query a node must maintain at a minimum the following infor-
mation (Tables 7.6 and 7.7):

• The channel incoming from the client (to know where to accept messages and return
responses)

7.7. RELATED WORK 139

Tid (1) Outgoing channel to dependent (N)

100 2

100 3

200 5

Table 7.5: Channels of Queries.

• The loop timeout and abort timeout

• The current state of the transaction (open or closed)

• The execution plan to invoke upon accepting a MSG RECEIVE request

• The results currently available for immediate non-blocking delivery with the next SEND
batch, as well as their number (minAvailResults); in practice these are implicitly
contained in the execution plan

• Query scope parameters such as the maximum (and already sent) result set size as well
as maximum (and already sent) byte size of the result set to be delivered, as specified
by the MSG QUERY message

Tid Incoming Channel from Client Abort Timeout Loop Timeout State Execution Plan

100 1 20 30 Open Plan 1

200 4 50 60 Open Plan 2

Table 7.6: Query State.

Tid AvailResults MinAvailResults MaxResults SentResults MaxResultsBytes SentBytes

100 {r1,r2,r3} 3 10 5 10000 5000

200 {r4,r5} 2 100 50 20000 10000

Table 7.7: Query State Continued.

For the purpose of exposition, the relational data model is used to describe state. Clearly
an implementation should use efficient data structures such as hash maps for frequent lookup
operations such as finding the transaction identifier of an incoming channel.

7.7 Related Work

RDBMS. The network protocols of Relational Database Management Systems are de-
signed with a tight focus on a single node architecture and response model. For maximum
efficiency, communication is tightly coupled, for example with low overhead Inter Process

140 CHAPTER 7. A UNIFIED PEER-TO-PEER DATABASE PROTOCOL

Communication (IPC) mechanisms carried over more efficient layers than TCP. Like our ap-
proach, RDBMS protocols also are stateful and allow for low latency, pipelining, early and/or
partial result set retrieval due to synchronous pull, and result set delivery in one or more
variable sized batches. They provide very strong functionality to provide for resource con-
sumption and flow control on a per query and/or per user basis. Low-level RDBMS interfaces
such as Oracle’s OCI [114] allow for application multiplexing. High-level access APIs such
as JDBC [115] do not provide access to such facilities; they use less scalable TCP connec-
tion pooling instead. RDBMS protocols are closed and proprietary (except for open source
products), and hence unsuitable for Internet-level interoperability and extensibility.

LDAP and MDS. The LDAP model allows for multi-level hierarchical topologies as well
as normal and referral response modes. It does not support arbitrary topologies and direct
response mode. MDS additionally supports routed response mode but otherwise has the same
properties as LDAP. Like our approach, both protocols are stateful as well as connection and
message-oriented. They do not support synchronous pull, and result set delivery in one or
more variable sized batches. Synchronous paging behavior has been proposed [74], but this
is still inefficient, because each response message still contains a single entry only. They do
support asynchronous push. They do not provide for resource consumption and flow control
on a per query basis. They lack a concept that concentrates all messages related to a query,
like a BEEP channel2. LDAP has a notion of application multiplexing that is not equivalent
to ours. The fact that messages may be unordered is dictated by the LDAP network protocol.
The BEEP network protocol guarantees for ordered message delivery. If LDAP were used for
PDP messaging, the parameters Q and R of a SEND message would be meaningless. Likewise,
the server response for a CLOSE request would be allowed to “overtake” the SEND responses
for prior RECEIVE requests, which violates pipelining semantics. Like BEEP, LDAP is an
IETF standard.

Gnutella and Freenet. Gnutella and Freenet support queries in arbitrary graph topologies
but only a single response mode. Like our approach, their protocols are stateful as well as
connection and message-oriented. They do not support synchronous pull but they do support
asynchronous push with one or more variable sized batches. Like LDAP and MDS, they do
not provide for resource consumption and flow control on a per query basis. However, they
do have a notion of application multiplexing that is equivalent to ours for the purpose of
result set retrieval. Their protocol specifications are not closed and proprietary, but they are
ad-hoc specifications without any relation to an open IETF standard and its implied quality
in terms of interoperability and extensibility.

2The specification reads “Note that although servers are required to return responses whenever such re-
sponses are defined in the protocol, there is no requirement for synchronous behavior on the part of either
client or server implementations: requests and responses for multiple operations may be exchanged by client
and servers in any order, as long as clients eventually receive a response for every request that requires one”
[14].

7.8. SUMMARY 141

7.8 Summary

Comparison with Related Work. We describe how the operations of the Unified Peer-
to-Peer Database Framework (UPDF) and registry XQuery interface from Section 5.2 are
carried over (bound to) a network protocol. We develop a messaging, communication and
network protocol model, collectively termed Peer Database Protocol (PDP). PDP supports
P2P database queries for a wide range of database architectures and response models such
that the stringent demands of ubiquitous Internet infrastructures in terms of scalability,
efficiency, interoperability, extensibility and reliability can be met.

PDP has a number of key properties. It is applicable to any node topology (e.g. central-
ized, distributed or P2P) and to multiple P2P response modes (routed response and direct
response, both with and without metadata modes). To support loosely coupled autonomous
Internet infrastructures, the model is connection-oriented (ordered, reliable, congestion sensi-
tive) and message-oriented (loosely coupled, operating on structured data). For efficiency, it
is stateful at the protocol level, with a transaction consisting of one or more discrete message
exchanges related to the same query. It allows for low latency, pipelining, early and/or partial
result set retrieval due to synchronous pull, and result set delivery in one or more variable
sized batches. It is efficient, due to asynchronous push with delivery of multiple results per
batch. It provides for resource consumption and flow control on a per query basis, due to
the use of a distinct channel per transaction. It is scalable, due to application multiplexing,
which allows for very high query concurrency and very low latency, even in the presence of
secure TCP connections. To encourage interoperability and extensibility it is fully based
on Internet Engineering Task Force (IETF) standards, for example in terms of asynchrony,
encoding, framing, authentication, privacy and reporting.

These key properties distinguish our approach from related work, which individually ad-
dresses some, but not all of the above issues. We are not aware of related work that proposes
a uniform messaging model that is applicable to any node topology and at the same time
to multiple P2P response modes. Some related work does not apply to loosely coupled au-
tonomous database nodes (RDBMS). Some protocols are not stateful at the protocol level
(HTTP based mechanisms). Some do not support synchronous pull (LDAP, MDS, Gnutella,
Freenet) and result set delivery in one or more variable sized batches (LDAP, MDS, HTTP
based mechanisms). Some do not support asynchronous push with delivery of multiple re-
sults per batch (LDAP, MDS, HTTP based mechanisms). Some do not provide for resource
consumption and flow control on a per query basis (LDAP, MDS, Gnutella, Freenet, HTTP
based mechanisms). Some lack application multiplexing for scalable query concurrency (some
RDBMS drivers, HTTP based mechanisms, LDAP, MDS). Some do not encourage interop-
erability and extensibility based on open IETF standards (RDBMS, Gnutella, Freenet).

Summary. The high-level messaging model employs four request messages (QUERY,
RECEIVE, INVITE, CLOSE) and a response message (SEND). A transaction is a sequence
of one or more message exchanges between two peers (nodes) for a given query. An exam-
ple transaction is a QUERY-RECEIVE-SEND-RECEIVE-SEND-CLOSE sequence. A peer
can concurrently handle multiple independent transactions. A transaction is identified by
a transaction identifier. Every message of a given transaction carries the same transaction

142 CHAPTER 7. A UNIFIED PEER-TO-PEER DATABASE PROTOCOL

identifier.
A QUERY message is forwarded along hops through the topology. A RECEIVE message

is used by a client to request query results from another node. It requests the node to
respond with a SEND message, containing a batch of at least N and at most M results from
the (remainder of the) result set. A client may issue a CLOSE request to inform a node that
the remaining results (if any) are no longer needed and can safely be discarded. If the local
result set is not empty under direct response, the node directly contacts the agent with an
INVITE message to solicit a RECEIVE message. A RECEIVE request can ask to deliver
SEND messages in either synchronous (pull) or asynchronous (push) mode. In synchronous
mode a single RECEIVE request must precede every single SEND response. An example
sequence is RECEIVE-SEND-RECEIVE-SEND. In asynchronous mode a single RECEIVE
request asks for a sequence of successive SEND responses. A client need not explicitly request
more results, as they are automatically pushed in a sequence of zero or more SENDs. An
example sequence is RECEIVE-SEND-SEND-SEND. Appropriately sized batched delivery
greatly reduces the number of hops incurred by a single RECEIVE. To reduce latency, a
node may prefetch query results.

A node maintains a state table that keeps for each query at a minimum the transaction
identifier, abort timeout, loop timeout and an open/closed state flag. A query can be in three
states: unknown, open or closed. The rules governing state transitions are detailed.

The model is mapped down to the abstract messaging model of the BEEP application
level network protocol framework. The permitted kinds of message exchanges are detailed.
Message types and their parameters are mapped to XML representations.

An abstract communication model is discussed that spells out how a message is carried
from one peer to another. The BEEP communication model operates on abstract entities
such as sessions, channels, messages and frames. Two peers establish a session for commu-
nication. Within a session, one or more channels can be established. A channel carries zero
or more messages. A message can have arbitrary length and content. A message is seg-
mented into one or more frames of variable length. Within a channel, pipelining is provided
(messages are serialized). Channels are isolated from each other, and therefore handle asyn-
chrony/multiplexing. Inter-channel messages may be unordered. In our context, one channel
per distinct transaction is used to isolate communication referring to different queries and to
ensure that messages of a transaction are processed in serial order. Flow control issues are
discussed arising from the use of concurrent channels of a session.

There are two options to map TCP connections: one TCP connection per channel (TCP
multiplexing or TM) and one TCP connection per session (application multiplexing or AM).
The properties of both models are discussed. TM has the distinct disadvantage of being
much less efficient in the presence of high frequency channel creation. Hence, application
multiplexing is chosen. A node with N neighbors has N incoming and N outgoing TCP
connections.

The BEEP framework is adopted because it is designed for application multiplexing and
integrates existing best-of-breed standards. It defines how to handle asynchrony (handling
independent exchanges), encoding (representing messages), framing (delimiting messages),
authentication (verifying user identities), privacy (protecting against third-party interception)
and reporting (conveying status information such as errors). The BEEP transport mapping

7.8. SUMMARY 143

to TCP uses application multiplexing (one TCP connection per session).

144 CHAPTER 7. A UNIFIED PEER-TO-PEER DATABASE PROTOCOL

Chapter 8

Conclusion

8.1 Summary

This thesis tackles the problems of information, resource and service discovery arising in
large distributed Internet systems spanning multiple administrative domains. We show how
to support expressive general-purpose queries over a view that integrates autonomous dy-
namic database nodes from a wide range of distributed system topologies. The work was
carried out in the context of the European DataGrid project (EDG) at CERN, the Euro-
pean Organization for Nuclear Research, and supported by the Austrian Ministerium für
Wissenschaft, Bildung und Kultur.

Service Discovery Processing Steps. A key question is:

• What distinct problem areas and processing steps can be distinguished in order to enable
flexible remote invocation in the context of service discovery?

To establish the context, we outline eight problem areas and their associated processing
steps, namely description, presentation, publication, request, discovery, brokering, execution
and control. We propose a simple grammar (SWSDL) for describing network services as
collections of service interfaces capable of executing operations over network protocols to
endpoints. The grammar is intended to be used in the high-level architecture and design
phase of a software project. A service must present its current description so that clients from
anywhere can retrieve it at any time. For broad acceptance, adoption and easy integration of
legacy services, an HTTP hyperlink is chosen as an identifier and retrieval mechanism (service
link). A registry for publication and query of service and resource presence information
is outlined. Reliable, predictable and simple distributed registry state maintenance in the
presence of service failure, misbehavior or change is addressed by a simple and effective soft
state mechanism. The notions of request, resource and operation are clarified. We outline
the discovery step, which finds services implementing the operations required by a request.
The brokering step determines an invocation schedule, which is a mapping over time of
unbound operations to service operation invocations using given resources. The execution
step implements a schedule. It uses the supported protocols to invoke operations on remote
services. We discuss how one can reliably support monitoring and controlling the lifecycle of
a request in the presence of a service that cannot reliably complete a request within a short
and well-known expected timeframe.

146 CHAPTER 8. CONCLUSION

Discovery Data Model and Query Language. The key problem is:

• What kind of database, query and data model as well as query language can support
simple and complex dynamic information discovery with as few as possible architecture
and design assumptions? In particular, how can one uniformly support queries in a
wide range of distributed system topologies and deployment models, while at the same
time accounting for their respective characteristics?

We develop a database and query model as well as a generic and dynamic data model
that address the given problem. All subsequent chapters are based on these models. Unlike
in the relational model the elements of a tuple in our data model can hold structured or
semi-structured data in the form of any arbitrary well-formed XML document or fragment.
An individual tuple element may, but need not, have a schema, in which case the element
must be valid according to the schema. The elements of all tuples may, but need not, share
a common schema. The concepts of (logical) query and (physical) query scope are cleanly
separated rather than interwoven. A query is formulated against a global database view and
is insensitive to link topology and deployment model. In other words, to a query the set of
all tuples appears as a single homogenous database, even though the set may be (recursively)
partitioned across many nodes and databases. The query scope, on the other hand, is used
to navigate and prune the link topology and filter on attributes of the deployment model.
A query is evaluated against a set of tuples. The set, in turn, is specified by the scope.
Conceptually, the scope is the input fed to the query. Example service discovery queries are
given. Three query types are identified, namely simple, medium and complex. An appropriate
query language (XQuery) is suggested. The suitability of the query language is demonstrated
by formulating the example prose queries in the language. Detailed requirements for a query
language supporting service and resource discovery are given. The capabilities of various
query languages are compared.

Database for Discovery of Distributed Content. The key problem is:

• How should a database node maintain information populated from a large variety of un-
reliable, frequently changing, autonomous and heterogeneous remote data sources? In
particular, how should it do so without sacrificing reliability, predictability and simplic-
ity? How can powerful queries be expressed over time-sensitive dynamic information?

A type of database is developed that addresses the problem. A database for XQueries
over dynamic distributed content is designed and specified – the so-called hyper registry. The
hyper registry has a number of key properties. An XML data model allows for structured
and semi-structured data, which is important for integration of heterogeneous content. The
XQuery language allows for powerful searching, which is critical for non-trivial applications.
Database state maintenance is based on soft state, which enables reliable, predictable and
simple content integration from a large number of autonomous distributed content providers.
Content link, content cache and a hybrid pull/push communication model allow for a wide
range of dynamic content freshness policies, which may be driven by all three system com-
ponents: content provider, hyper registry and client.

8.1. SUMMARY 147

Web Service Discovery Architecture. The key problem is:

• Can we define a discovery architecture that promotes interoperability, embraces industry
standards, and is open, modular, flexible, unified, non-intrusive and simple yet power-
ful?

We propose and specify a discovery architecture, the so-called Web Service Discovery
Architecture (WSDA). WSDA views the Internet as a large set of services with an exten-
sible set of well-defined interfaces. It promotes an interoperable web service layer on top
of existing and future Internet software, because it defines appropriate services, interfaces,
operations and protocol bindings. WSDA subsumes an array of disparate concepts, interfaces
and protocols under a single semi-transparent umbrella. It specifies a small set of orthogonal
multi-purpose communication primitives (building blocks) for discovery. These primitives
cover service identification, service description retrieval, data publication as well as minimal
and powerful query support. The individual primitives can be combined and plugged together
by specific clients and services to yield a wide range of behaviors and emerging synergies.
Finally, we compare in detail the properties of WSDA with the emerging Open Grid Service
Architecture.

Unified Peer-to-Peer Database Framework. The key problems are:

• What are the detailed architecture and design options for P2P database searching in
the context of service discovery? What response models can be used to return matching
query results? How should a P2P query processor be organized? What query types can
be answered (efficiently) by a P2P network? What query types have the potential to
immediately start piping in (early) results? How can a maximum of results be delivered
reliably within the time frame desired by a user, even if a query type does not support
pipelining? How can loops be detected reliably using timeouts? How can a query scope be
used to exploit topology characteristics in answering a query? For improved efficiency,
how can queries be executed in containers that concentrate distributed P2P database
nodes into hosting environments with virtual nodes?

• Can we devise a unified P2P database framework for general-purpose query support in
large heterogeneous distributed systems spanning many administrative domains? More
precisely, can we devise a framework that is unified in the sense that it allows to express
specific applications for a wide range of data types, node topologies, query languages,
query response modes, neighbor selection policies, pipelining characteristics, timeout
and other scope options?

We take the first steps towards unifying the fields of database management systems and
P2P computing, which so far have received considerable, but separate, attention. We extend
database concepts and practice to cover P2P search. Similarly, we extend P2P concepts
and practice to support powerful general-purpose query languages such as XQuery and SQL.
As a result, we propose the so-called Unified Peer-toPeer Database Framework (UPDF) for
general-purpose query support in large heterogeneous distributed systems spanning many

148 CHAPTER 8. CONCLUSION

administrative domains. UPDF is unified in the sense that it allows to express specific
applications for a wide range of data types, node topologies, query languages, query response
modes, neighbor selection policies, pipelining characteristics, timeout and other scope options.

Unified Peer-to-Peer Database Protocol. The key problem is:

• What messaging and communication model, as well as network protocol, uniformly sup-
port P2P database queries for a wide range of database architectures and response mod-
els such that the stringent demands of ubiquitous Internet discovery infrastructures in
terms of scalability, efficiency, interoperability, extensibility and reliability can be met?
In particular, how can one allow for high concurrency, low latency as well as early
and/or partial result set retrieval? How can one encourage resource consumption and
flow control on a per query basis?

These problems are addressed by developing a suitable messaging, communication and
network protocol model, collectively termed Peer Database Protocol (PDP). PDP describes
how the operations of the Peer-to-Peer Database Framework (UPDF) and registry XQuery in-
terface are carried over (bound to) a network protocol. PDP has a number of key properties.
It is applicable to any node topology (e.g. centralized, distributed or P2P) and to multiple
P2P response modes (routed response and direct response, both with and without meta-
data modes). To support loosely coupled autonomous Internet infrastructures, the model
is connection-oriented (ordered, reliable, congestion sensitive) and message-oriented (loosely
coupled, operating on structured data). For efficiency, it is stateful at the protocol level,
with a transaction consisting of one or more discrete message exchanges related to the same
query. It allows for low latency, pipelining, early and/or partial result set retrieval due to
synchronous pull, and result set delivery in one or more variable sized batches. It is efficient,
due to asynchronous push with delivery of multiple results per batch. It provides for resource
consumption and flow control on a per query basis, due to the use of a distinct channel per
transaction. It is scalable, due to application multiplexing, which allows for very high query
concurrency and very low latency, even in the presence of secure TCP connections. To en-
courage interoperability and extensibility it is fully based on Internet Engineering Task Force
(IETF) standards, for example in terms of asynchrony, encoding, framing, authentication,
privacy and reporting.

8.2 Directions for Future Research

The results presented in this thesis open five interesting research directions.
First, it would be interesting to extend further the unification and extension of concepts

from Database Management Systems and P2P computing. For example, one could consider
the application of database techniques such as buffer cache maintenance, view materializa-
tion, placement and selection as well as query optimization for use in P2P computing. These
techniques would need to be extended in the light of the complexities stemming from au-
tonomous administrative domains, inconsistent and incomplete (soft) state, dynamic and
flexible cache freshness policies and, of course, tuple updates. An important problem left

8.2. DIRECTIONS FOR FUTURE RESEARCH 149

open in our work is the question if a query processor can automatically determine whether
a correct merge query and unionizer exist, and if so, how to choose them. Here approaches
from query rewriting for heterogeneous and homogenous relational database systems [45, 95]
should prove useful. Further, database resource management and authorization mechanisms
might be worthwhile to consider for specific flow control policies per query or per user.

Second, it would be interesting to study and specify in more detail specific cache freshness
interaction policies between content provider, hyper registry and client (query). Our speci-
fication allows expressing a wide range of policies, some of which we outline, but we do not
evaluate in detail the merits and drawbacks of any given policy.

Third, it would be valuable to rigourously assess, review and compare the Web Service
Discovery Architecture (WSDA) and the Open Grid Service Architecture (OGSA) in terms
of concepts, design and specifications. A strong goal is to achieve convergence by extracting
best-of-breed solutions from both proposals. Future collaborative work could further improve
current solutions, for example in terms of simplicity, orthogonality and expressiveness. For
practical purposes, our pedagogical service description language (SWSDL) could be mapped
to WSDL, taking into account the OGSA proposal. This would allow to use SWSDL as a
tool for greatly improved clarity in high-level architecture and design discussions, while at
the same time allowing for painstakingly detailed WSDL specifications addressing ambiguity
and interoperability concerns.

Fourth, Tim Berners-Lee designed the World Wide Web as a consistent interface to a
flexible and changing heterogeneous information space for use by CERN’s staff, the High
Energy Physics community, and, of course, the world at large. The WWW architecture
[86] rests on four simple and orthogonal pillars: URIs as identifiers, HTTP for retrieval of
content pointed to by identifiers, MIME for flexible content encoding, and HTML as the
primus-inter-pares (MIME) content type. Based on our Dynamic Data Model (DDM), we
hope to proceed further towards a self-describing meta content type that retains and wraps
all four WWW pillars “as is”, yet allows for flexible extensions in terms of identification,
retrieval and caching of content. Judicious combination of the four Web pillars, DDM, the
Web Service Discovery Architecture (WSDA), the Hyper Registry, the Unified Peer-to-Peer
Database Framework (UPDF) and its associated Peer Database Protocol (PDP) are used
to define how to bootstrap, query and publish to a dynamic and heterogeneous information
space maintained by self-describing network interfaces.

Fifth, we are starting to build a system prototype with the aim of reporting on experi-
ence gained from application to an existing large distributed system such as the European
DataGrid.

150 CHAPTER 8. CONCLUSION

Chapter 9

Acknowledgements

This thesis is dedicated to my family. Dietlind and Gert put me on the trajectory that
eventually led to this thesis. Dietlind has a way to spread fairness and humanity. She is
much engaged in social life, and draws satisfaction from interpretation of symbols from the
history of arts such as the raven. Gert constantly radiates perspectives on all aspects of life.
He induced the sense of creation, taught us evolution, the history of earth and concentration
camps, and what science was about. He showed how to walk off track, making us see and
understand rock faces, the pull of mountains and a wild will for freedom. Thanks to my
brothers for everything we shared. Stefan, the mountaineer and straightforward no-nonsense
physician in remote Northern India, will, with luck, soon be based in Mongolia. If you need his
treatment, watch out for martial disinfections. Ulli and Renate favour handling snowboards
and skateboards, cameras, extravagant body and hair designs, and, of course, their love.

This piece of paper is also prominently dedicated to Ben Segal, who led the CERN team,
day in day out supporting this work with great integrity, enthusiasm and, above all else, in
a distinct spirit of humanity and friendship. Frankly, this work would not exist without you,
Ben. Gerti Kappel, Erich Schikuta and Bernd Panzer-Steindel patiently advised and guided
this thesis, suggesting what always turned out to be wise alleys.

I am happy to remember Brian Tierney who shared office with me in Geneva for the last
year. We had a good time hiking in the mountains of Chamonix and the Jura. With the wine
and food prepared by Christine’s magic hands, we’d get ready for late evening discussions.
Sorry you both had to return to Berkeley. Thanks to Annemarie for having appeared at the
right moment, at the right place, and also for introducing the cembalos, flutists and counter
tenors of Vienna. Thanks to Kurt Stockinger, through many CERN years the spare time
friend, co-worker and Mr. Query Optimizer, as well as Heinz Stockinger.

Testing ideas against the solid background of Dirk Düllmann, Ian Foster, Johannes Gutle-
ber, Koen Holtman and Carl Kesselman proved an invaluable recipe in separating wheat from
chaff. All of the above, as well as German Cancio, Francesco Giacomini, Leanne Guy, Peter
Kunszt, Javier Jaen-Martinez, Gavin McCance, Asad Samar and many more colleagues from
the CERN IT Division, DataGrid Architecture Task Force, DataGrid, Globus, RD45 and
CMS collaborations engaged in countless discussions, contributing thoughtful perspectives.
Wolfgang von Rüden and Les Robertson provided encouragement and essential organizational
backing. Dominique Dupraz cared for ceremonial wine and cake and the rituals on the hall-
way of the department. Karlheinz Schindl, Werner Jank and Chris Fabjan kindly assisted in
navigating the Austrian Doctoral Student Programme and the CERN fellowship.

152 CHAPTER 9. ACKNOWLEDGEMENTS

References

[1] Ben Segal. Grid Computing: The European Data Grid Project. In IEEE Nuclear Science Symposium
and Medical Imaging Conference, Lyon, France, October 2000.

[2] Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, Heinz Stockinger, and Kurt Stockinger. Data
Management in an International Data Grid Project. In 1st IEEE/ACM Int. Workshop on Grid Com-
puting (Grid’2000), Bangalore, India, December 2000.

[3] Dirk Düllmann, Wolfgang Hoschek, Javier Jean-Martinez, Asad Samar, Ben Segal, Heinz Stockinger, and
Kurt Stockinger. Models for Replica Synchronisation and Consistency in a Data Grid. In 10th IEEE
Symposium on High Performance and Distributed Computing (HPDC-10), San Francisco, California,
August 2001.

[4] Large Hadron Collider Committee. Report of the LHC Computing Review. Technical report,
CERN/LHCC/2001-004, April 2001. http://lhc-computing-review-public.web.cern.ch/lhc-computing-
review-public/Public/Report final.PDF.

[5] Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int. Journal of Supercomputer Applications, 15(3), 2001.

[6] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steve Tuecke. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration, January 2002.

[7] P. Cauldwell, R. Chawla, Vivek Chopra, Gary Damschen, Chris Dix, Tony Hong, Francis Norton, Uche
Ogbuji, Glenn Olander, Mark A. Richman, Kristy Saunders, and Zoran Zaev. Professional XML Web
Services. Wrox Press, 2001.

[8] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language
(WSDL) 1.1. W3C Note 15, 2001. www.w3.org/TR/wsdl.

[9] World Wide Web Consortium. Simple Object Access Protocol (SOAP) 1.1. W3C Note 8, 2000.

[10] UDDI Consortium. UDDI: Universal Description, Discovery and Integration. www.uddi.org.

[11] World Wide Web Consortium. Extensible Markup Language (XML) 1.0. W3C Recommendation, Oc-
tober 2000.

[12] World Wide Web Consortium. XML Schema Part 0: Primer. W3C Recommendation, May 2001.

[13] International Telecommunications Union. Recommendation X.500, Information technology – Open Sys-
tem Interconnection – The directory: Overview of concepts, models, and services. ITU-T, November
1995.

[14] W. Yeong, T. Howes, and S. Kille. Lightweight Directory Access Protocol. IETF RFC 1777, March
1995.

[15] Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kesselman. Grid Information Services for Dis-
tributed Resource Sharing. In Tenth IEEE Int. Symposium on High-Performance Distributed Computing
(HPDC-10), San Francisco, California, August 2001.

[16] Steven Fitzgerald, Ian Foster, Carl Kesselman, Gregor von Laszewski, Warren Smith, and Steven Tuecke.
A Directory Service for Configuring High-Performance Distributed Computations. In 6th Int. Symposium
on High Performance Distributed Computing (HPDC ’97), 1997.

153

154 REFERENCES

[17] Steven Tuecke, Karl Czajkowski, Ian Foster, Jeffrey Frey, Steve Graham, and Carl Kesselman. Grid
Service Specification, February 2002.

[18] World Wide Web Consortium. XQuery 1.0: An XML Query Language. W3C Working Draft, December
2001.

[19] International Organization for Standardization (ISO). Information Technology-Database Language SQL.
Standard No. ISO/IEC 9075:1999, 1999.

[20] P. Mockapetris. Domain Names - Implementation and Specification. IETF RFC 1035, November 1987.

[21] Gnutella Community. Gnutella Protocol Specification v0.4. dss.clip2.com/GnutellaProtocol04.pdf.

[22] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed anonymous information storage
and retrieval system. In Workshop on Design Issues in Anonymity and Unobservability, 2000.

[23] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-resilient wide-area
location and routing. Technical report, U.C. Berkeley UCB//CSD-01-1141, 2001.

[24] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In ACM SIGCOMM, 2001.

[25] M. van Steen, P. Homburg, and A. Tanenbaum. A wide-area distributed system. IEEE Concurrency,
1999.

[26] Steven E. Czerwinski, Ben Y. Zhao, Todd Hodes, Anthony D. Joseph, and Randy Katz. An Architecture
for a Secure Service Discovery Service. In Fifth Annual Int. Conf. on Mobile Computing and Networks
(MobiCOM ’99), Seattle, WA, August 1999.

[27] Beverly Yang and Hector Garcia-Molina. Efficient Search in Peer-to-Peer Networks. In 22nd Int. Conf.
on Distributed Computing Systems, Vienna, Austria, July 2002.

[28] Adriana Iamnitchi and Ian Foster. On Fully Decentralized Resource Discovery in Grid Environments.
In Int. IEEE Workshop on Grid Computing, Denver, Colorado, November 2001.

[29] A. Puniyani B. Huberman L. Adamic, R. Lukose. Search in power-law networks. Phys. Rev, E(64),
2001.

[30] S. Bradner. Key Words for use in RFCs to Indicate Requirement Levels. IETF RFC 2119, March 1997.

[31] E. O’Tuathail and M. Rose. Using SOAP in BEEP. IETF Draft draft-etal-beep-soap-06, January 2002.

[32] J. Postel and J. Reynolds. File Transfer Protocol (FTP). IETF RFC 959, October 1985.

[33] J. Postel. Using SOAP in BEEP. IETF RFC 821, August 1982.

[34] R. Fielding, J. Gettys, J.C. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. IETF RFC 2616. UC Irvine, Digital Equipment Corporation, MIT.

[35] Marshall Rose. The Blocks Extensible Exchange Protocol Core. IETF RFC 3080, March 2001.

[36] Marshall Rose. Mapping the BEEP Core onto TCP. IETF RFC 3081, March 2001.

[37] S. Gullapalli, K. Czajkowski, C. Kesselman, and S. Fitzgerald. The grid notification framework. Tech-
nical report, Grid Forum Working Draft GWD-GIS-019, June 2001. http://www.gridforum.org.

[38] Rajkumar Buyya, Steve Chapin, and David DiNucci. Architectural Models for Resource Management
in the Grid. In 1st IEEE/ACM Int. Workshop on Grid Computing (GRID 2000), Bangalore, India,
December 2000.

[39] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource Management for High
Throughput Computing. In 7th IEEE Int. Symposium on High Performance Distributed Computing
(HPDC’98), Chicago, IL, July 1998.

[40] I. Foster, A. Roy, and V. Sander. A Quality of Service Architecture that Combines Resource Reservation
and Application Adaptation. In 8th Int. Workshop on Quality of Service, 2000.

[41] Nelson Minar. Peer-to-Peer is Not Always Decentralized. In The O’Reilly Peer-to-Peer and Web Services
Conference, Washington, D.C., November 2001.

REFERENCES 155

[42] J.D. Ullman. Information integration using logical views. In Int. Conf. on Database Theory (ICDT),
Delphi, Greece, 1997.

[43] Daniela Florescu, Ioana Manolescu, Donald Kossmann, and Florian Xhumari. Agora: Living with XML
and Relational. In Int. Conf. on Very Large Data Bases (VLDB), Cairo, Egypt, February 2000.

[44] A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to heterogeneous data sources with DISCO.
IEEE Transactions on Knowledge and Data Engineering, 10(5):808–823, 1998.

[45] Donald Kossmann. The state of the art in distributed query processing. ACM Computing Surveys,
September 2000.

[46] Dan Suciu. On Database Theory and XML. SIGMOD Record, 30(3), 2001.

[47] Mary Fernandez, Morishima Atsuyuki, Dan Suciu, and Tan Wang-Chiew. Publishing Relational Data
in XML: the SilkRoute Approach. IEEE Data Engineering Bulletin, 24(2), 2001.

[48] Daniela Florescu, Ioana Manolescu, and Donald Kossmann. Answering XML Queries over Heterogeneous
Data Sources. In Int. Conf. on Very Large Data Bases (VLDB), Roma, Italy, September 2001.

[49] Brian Tierney, Ruth Aydt, Dan Gunter, Warren Smith, Valerie Taylor, Rich Wolski, and Martin Swany.
A Grid Monitoring Architecture. Technical report, Grid Forum Working Draft GWD-Perf-16-2, January
2002. http://www.gridforum.org.

[50] World Wide Web Consortium. XML Query Use Cases. W3C Working Draft, December 2001.

[51] World Wide Web Consortium. XML Query Requirements. W3C Working Draft, February 2001.

[52] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working
Draft, December 2001.

[53] Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: an XML Query Language for Hetero-
geneous Data Sources. Lecture Notes in Computer Science, 42(7), December 2000.

[54] World Wide Web Consortium. XML Path Language (XPath) Version 1.0. W3C Recommendation,
November 1999.

[55] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). In The Query Languages Workshop
(QL’98), Boston, Massachussets, December 1998.

[56] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for XML. In Eighth
Int. World Wide Web Conference, 1999.

[57] Rick Cattell et al. The Object Database Standard: ODMG-93, Release 1.2. Morgan Kaufmann Publish-
ers, San Francisco, 1996.

[58] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft, December
2001.

[59] World Wide Web Consortium. XSL Transformations (XSLT) 2.0. W3C Working Draft.

[60] World Wide Web Consortium. XML Pointer Language (XPointer). W3C Last Call Working Draft,
January 2001.

[61] Steve Fisher et al. Information and Monitoring (WP3) Architecture Report. Technical report, DataGrid-
03-D3.2, January 2001.

[62] W. P. Dinda and B. Plale. A Unified Relational Approach to Grid Information Services. Technical
report, Grid Forum Informational Draft GWD-GIS-012-1, February 2001. http://www.gridforum.org.

[63] J. Waldo. The Jini architecture for network-centric computing. Communications of the ACM, July 1999.

[64] Apache Software Foundation. The Apache HTTP Server. http://httpd.apache.org.

[65] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic Syntax.
IETF RFC 2396.

[66] Apache Software Foundation. The Jakarta Tomcat Project. http://jakarta.apache.org/tomcat/.

[67] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies. IETF RFC 2045, November 1996.

156 REFERENCES

[68] World Wide Web Consortium. XML-Signature Syntax and Processing. W3C Recommendation, February
2002.

[69] P. Brittenham. An Overview of the Web Services Inspection Language, 2001.
www.ibm.com/developerworks/webservices/library/ws-wsilover.

[70] Software AG. The Quip XQuery processor. http://www.softwareag.com/developer/quip/.

[71] J. Wang. A survey of web caching schemes for the Internet. ACM Computer Communication Reviews,
29(5), October 1999.

[72] D. Mills. Network Time Protocol (Version 3) Specification, Implementation and Analysis. IETF RFC
1305, March 1992.

[73] Dan Gunter, Brian Tierney, and Ruth Aydt. Timestamp model for grid computing. Technical report,
Global Grid Forum Working Draft GWD-PERF-014-1, 2001. http://www.gridforum.org.

[74] C. Weider, A. Herron, A. Anantha, and T. Howes. LDAP Control Extension for Simple Paged Results
Manipulation. IETF RFC 2696.

[75] M. P. Maher and C. Perkins. Session Announcement Protocol: Version 2. IETF Internet Draft draft-
ietf-mmusic-sap-v2-00.txt, November 1998.

[76] E. Levy-Abegnoli, A. Iyengar, J. Song, and D. Dias. Design and performance of Web server accelerator.
In Proceedings of Infocom’99, 1999.

[77] J. Challenger, A. Iyengar, and P. Dantzig. A scalable system for consistently caching dynamic Web
data. In Proceedings of Infocom’99, 1999.

[78] The OpenLDAP project. The OpenLDAP project. http://www.openldap.org.

[79] A. Wu, H. Wang, and D. Wilkins. Performance Comparison of Web-To-Database Applications. In
Proceedings of the Southern Conference on Computing, The University of Southern Mississippi, October
2000.

[80] S.Dar, M.J. Franklin, B. Jnnson, D. Srivastava, and M. Tan. Semantic Data Caching and Replacement.
In Int. Conf. on Very Large Data Bases (VLDB), Bombay, India, 1996.

[81] L. Chen, E.A. Rundensteiner, and S. Wang. XCache - A Semantic Caching System for XML Queries.
In ACM SIGMOD Conf. On Management of Data, 2002. Software System Demonstration Paper.

[82] Oracle. J2EE and Microsoft .NET, April 2002. Oracle Corp., White Paper.

[83] Madhusudhan Govindara, Aleksander Slominski, Venkatesh Choppella, Randall Bramley, and Dennis
Gannon. Requirements for and Evaluation of RMI Protocols for Scientific Computing. In Supercomputing
Conference (SC’00), Dallas, Texas, November 2000.

[84] David Culler, Kim Keeton, Lok Tim Liu, Alan Mainwaring, Rich Martin, Steve Rodrigues, Kristin
Wright, and Chad Yoshikawa. The Generic Active Message Interface Specification, August 1994. Com-
puter Science Division, University of California at Berkeley, White Paper.

[85] Maite Barroso. Grid Fabric Management Work Package Report on Current Technology. Technical
report, DataGrid-04-TED-0101, May 2001.

[86] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architectures.
PhD Thesis, University of California, Irvine, 2000.

[87] G. Panduragan, P. Raghavan, and E. Upfal. Protocols for building low diameter peer-to-peer networks.
In DIMACS Workshop on Internet and WWW Measurement, Mapping and Modeling, Piscataway, NJ,
February 2002.

[88] Ron Rivest. The MD5 message-digest algorithm. IETF RFC 1321, April 1992.

[89] National Institute of Standards and Technology. Secure Hash Standard. Technical report, FIPS 180-1,
Washington, D.C., April 1995.

[90] Matei Ripeanu. Peer-to-Peer Architecture Case Study: Gnutella Network. In Int. Conf. on Peer-to-Peer
Computing (P2P2001), Linkoping, Sweden, August 2001.

REFERENCES 157

[91] Clip2Report. Gnutella: To the Bandwidth Barrier and Beyond. http://www.clip2.com/gnutella.html.

[92] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A Community Authorization Service
for Group Collaboration. In IEEE 3rd Int. Workshop on Policies for Distributed Systems and Networks
(submitted), 2001.

[93] Stefano Ceri and Giuseppe Pelagatti. Distributed Databases - Principles and Systems. McGraw-Hill
Computer Science Series, 1985.

[94] M. Franklin, B. Jonsson, and D. Kossmann. Performance tradeoffs for client-server query processing.
In ACM SIGMOD Conf. On Management of Data, Montreal, Canada, June 1996.

[95] Y. Papakonstantinou and V. Vassalos. Query rewriting for semistructured data. In ACM SIGMOD
Conf. On Management of Data, 1999.

[96] Dan Suciu. Distributed Query Evaluation on Semistructured Data. ACM Transactions on Database
Systems, 2002.

[97] T. Urhan and M. Franklin. Dynamic Pipeline Scheduling for Improving Interactive Query Performance.
The Very Large Database (VLDB) Journal, 2001.

[98] Jordan Ritter. Why Gnutella Can’t Scale. No, Really. http://www.tch.org/gnutella.html.

[99] S.E. Deering. Multicast Routing in a Datagram Internetwork. PhD Thesis, Stanford University, 1991.

[100] Java Community Process. Java Servlet 2.3 Specification. jcp.org/aboutJava/communityprocess/final/jsr053.

[101] Java Community Process. Enterprise Java Beans Specification. java.sun.com/products/ejb/docs.html.

[102] IEEE. Data Engineering Bulletin, 23(2), June 2000.

[103] Jayavel Shanmugasundaram, Kristin Tufte, David J. DeWitt, Jeffrey F. Naughton, and David Maier.
Architecting a Network Query Engine for Producing Partial Results. In WebDB 2000 (Informal Pro-
ceedings), 2000.

[104] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Integrating Network-Bound XML Data. IEEE
Data Engineering Bulletin, 24(2), 2001.

[105] Jeffrey F. Naughton, David J. DeWitt, David Maier, Ashraf Aboulnaga, Jianjun Chen, Leonidas Gala-
nis, Jaewoo Kang, Rajasekar Krishnamurthy, Qiong Luo, Naveen Prakash, Ravishankar Ramamurthy,
Jayavel Shanmugasundaram, Feng Tian, Kristin Tufte, Stratis Viglas, Yuan Wang, Chun Zhang, Bruce
Jackson, Anurag Gupta, and Rushan Chen. The Niagara Internet Query System. IEEE Data Engineer-
ing Bulletin, 24(2), 2001.

[106] Annita N. Wilschut and Peter M. G. Apers. Dataflow query execution in a parallel main-memory
environment. In First Int. Conf. on Parallel and Distributed Information Systems (PDIS), December
1991.

[107] Zachary G. Ives, Daniela Florescu, Marc T. Friedman, Alon Y. Levy, and Daniel S. Weld. An adaptive
query execution system for data integration. In ACM SIGMOD Conf. On Management of Data, 1999.

[108] Tolga Urhan and Michael J. Franklin. Xjoin, A reactively-scheduled pipelined join operator. IEEE Data
Engineering Bulletin, 23(2), June 2000.

[109] Tolga Urhan and Michael J. Franklin. Dynamic Pipeline Scheduling for Improving Interactive Query
Performance. In Int. Conf. on Very Large Data Bases (VLDB), 2001.

[110] Beepcore Community. The beepcore open source project for Java, C and Tcl. http://www.beepcore.org.

[111] J. Myers. Simple Authentication and Security Layer (SASL). IETF RFC 2222, October 1997.

[112] T. Dierks and C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, January 1999.

[113] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and V. Welch. A National-Scale
Authentication Infrastructure. IEEE Computer, 33(12), 2000.

[114] Oracle Corp. Oracle Call Interface Programmer’s Guide, January 2002. Release 9.0.1, Part Number
A89857-01.

[115] Donald Bales. Java Programming with Oracle JDBC. O’Reilly, December 2001. ISBN 0-596-00088-x.

